Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F19%3A00071027" target="_blank" >RIV/00159816:_____/19:00071027 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14110/19:00107532 RIV/00216305:26220/19:PU133046
Výsledek na webu
<a href="https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-019-2880-8" target="_blank" >https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-019-2880-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12859-019-2880-8" target="_blank" >10.1186/s12859-019-2880-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison
Popis výsledku v původním jazyce
BackgroundBecause of its non-destructive nature, label-free imaging is an important strategy for studying biological processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple contrast microscopic modalities.ResultsWe built a collection of routines aimed at image segmentation of viable adherent cells grown on the culture dish acquired by phase contrast, differential interference contrast, Hoffman modulation contrast and quantitative phase imaging, and we performed a comprehensive comparison of available segmentation methods applicable for label-free data. We demonstrated that it is crucial to perform the image reconstruction step, enabling the use of segmentation methods originally not applicable on label-free images. Further we compared foreground segmentation methods (thresholding, feature-extraction, level-set, graph-cut, learning-based), seed-point extraction methods (Laplacian of Gaussians, radial symmetry and distance transform, iterative radial voting, maximally stable extremal region and learning-based) and single cell segmentation methods. We validated suitable set of methods for each microscopy modality and published them online.ConclusionsWe demonstrate that image reconstruction step allows the use of segmentation methods not originally intended for label-free imaging. In addition to the comprehensive comparison of methods, raw and reconstructed annotated data and Matlab codes are provided.
Název v anglickém jazyce
Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison
Popis výsledku anglicky
BackgroundBecause of its non-destructive nature, label-free imaging is an important strategy for studying biological processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple contrast microscopic modalities.ResultsWe built a collection of routines aimed at image segmentation of viable adherent cells grown on the culture dish acquired by phase contrast, differential interference contrast, Hoffman modulation contrast and quantitative phase imaging, and we performed a comprehensive comparison of available segmentation methods applicable for label-free data. We demonstrated that it is crucial to perform the image reconstruction step, enabling the use of segmentation methods originally not applicable on label-free images. Further we compared foreground segmentation methods (thresholding, feature-extraction, level-set, graph-cut, learning-based), seed-point extraction methods (Laplacian of Gaussians, radial symmetry and distance transform, iterative radial voting, maximally stable extremal region and learning-based) and single cell segmentation methods. We validated suitable set of methods for each microscopy modality and published them online.ConclusionsWe demonstrate that image reconstruction step allows the use of segmentation methods not originally intended for label-free imaging. In addition to the comprehensive comparison of methods, raw and reconstructed annotated data and Matlab codes are provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-24089S" target="_blank" >GA18-24089S: Kvantitativní fázová mikroskopie pro 3D kvalitativní charakterizaci nádorových buněk</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC Bioinformatics
ISSN
1471-2105
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
N/A
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
000473132400006
EID výsledku v databázi Scopus
—