Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Label-free nuclear staining reconstruction in quantitative phase images using deep learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU127913" target="_blank" >RIV/00216305:26220/18:PU127913 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14110/19:00108228

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-981-10-9035-6_43" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-10-9035-6_43</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-9035-6_43" target="_blank" >10.1007/978-981-10-9035-6_43</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Label-free nuclear staining reconstruction in quantitative phase images using deep learning

  • Popis výsledku v původním jazyce

    Fluorescence microscopy is a golden standard for contemporary biological studies. However, since fluorescent dyes cross-react with biological processes, a label-free approach is more desirable. The aim of this study is to create artificial, fluorescence-like nuclei labeling from label-free images using Convolution Neural Network (CNN), where training data are easy to obtain if simultaneous label-free and fluorescence acquisition is available. This approach was tested on holographic microscopic image set of prostate non-tumor tissue (PNT1A) and metastatic tumor tissue (DU145) cells. SegNet and U-Net were tested and provide "synthetic" fluorescence staining, which are qualitatively sufficient for further analysis. Improvement was achieved with addition of bright-field image (by-product of holographic quantitative phase imaging) into analysis and two step learning approach, without and with augmentation, were introduced. Reconstructed staining was used for nucleus segmentation where 0.784 and 0.781 dice coefficient (for DU145 and PNT1A) were achieved.

  • Název v anglickém jazyce

    Label-free nuclear staining reconstruction in quantitative phase images using deep learning

  • Popis výsledku anglicky

    Fluorescence microscopy is a golden standard for contemporary biological studies. However, since fluorescent dyes cross-react with biological processes, a label-free approach is more desirable. The aim of this study is to create artificial, fluorescence-like nuclei labeling from label-free images using Convolution Neural Network (CNN), where training data are easy to obtain if simultaneous label-free and fluorescence acquisition is available. This approach was tested on holographic microscopic image set of prostate non-tumor tissue (PNT1A) and metastatic tumor tissue (DU145) cells. SegNet and U-Net were tested and provide "synthetic" fluorescence staining, which are qualitatively sufficient for further analysis. Improvement was achieved with addition of bright-field image (by-product of holographic quantitative phase imaging) into analysis and two step learning approach, without and with augmentation, were introduced. Reconstructed staining was used for nucleus segmentation where 0.784 and 0.781 dice coefficient (for DU145 and PNT1A) were achieved.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-24089S" target="_blank" >GA18-24089S: Kvantitativní fázová mikroskopie pro 3D kvalitativní charakterizaci nádorových buněk</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    World Congress on Medical Physics and Biomedical Engineering, June 3-8, 2018, Prague, Czech Republic

  • ISBN

    978-981-10-9034-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    239-242

  • Název nakladatele

    Springer, Singapore

  • Místo vydání

    neuveden

  • Místo konání akce

    Prague

  • Datum konání akce

    3. 6. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000450908300043