Label-free nuclear staining reconstruction in quantitative phase images using deep learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU127913" target="_blank" >RIV/00216305:26220/18:PU127913 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14110/19:00108228
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-10-9035-6_43" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-10-9035-6_43</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9035-6_43" target="_blank" >10.1007/978-981-10-9035-6_43</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Label-free nuclear staining reconstruction in quantitative phase images using deep learning
Popis výsledku v původním jazyce
Fluorescence microscopy is a golden standard for contemporary biological studies. However, since fluorescent dyes cross-react with biological processes, a label-free approach is more desirable. The aim of this study is to create artificial, fluorescence-like nuclei labeling from label-free images using Convolution Neural Network (CNN), where training data are easy to obtain if simultaneous label-free and fluorescence acquisition is available. This approach was tested on holographic microscopic image set of prostate non-tumor tissue (PNT1A) and metastatic tumor tissue (DU145) cells. SegNet and U-Net were tested and provide "synthetic" fluorescence staining, which are qualitatively sufficient for further analysis. Improvement was achieved with addition of bright-field image (by-product of holographic quantitative phase imaging) into analysis and two step learning approach, without and with augmentation, were introduced. Reconstructed staining was used for nucleus segmentation where 0.784 and 0.781 dice coefficient (for DU145 and PNT1A) were achieved.
Název v anglickém jazyce
Label-free nuclear staining reconstruction in quantitative phase images using deep learning
Popis výsledku anglicky
Fluorescence microscopy is a golden standard for contemporary biological studies. However, since fluorescent dyes cross-react with biological processes, a label-free approach is more desirable. The aim of this study is to create artificial, fluorescence-like nuclei labeling from label-free images using Convolution Neural Network (CNN), where training data are easy to obtain if simultaneous label-free and fluorescence acquisition is available. This approach was tested on holographic microscopic image set of prostate non-tumor tissue (PNT1A) and metastatic tumor tissue (DU145) cells. SegNet and U-Net were tested and provide "synthetic" fluorescence staining, which are qualitatively sufficient for further analysis. Improvement was achieved with addition of bright-field image (by-product of holographic quantitative phase imaging) into analysis and two step learning approach, without and with augmentation, were introduced. Reconstructed staining was used for nucleus segmentation where 0.784 and 0.781 dice coefficient (for DU145 and PNT1A) were achieved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-24089S" target="_blank" >GA18-24089S: Kvantitativní fázová mikroskopie pro 3D kvalitativní charakterizaci nádorových buněk</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Medical Physics and Biomedical Engineering, June 3-8, 2018, Prague, Czech Republic
ISBN
978-981-10-9034-9
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
239-242
Název nakladatele
Springer, Singapore
Místo vydání
neuveden
Místo konání akce
Prague
Datum konání akce
3. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000450908300043