Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Review of Obstructive Sleep Apnea Detection Approaches

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F19%3A00071054" target="_blank" >RIV/00159816:_____/19:00071054 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/8331075/metrics#metrics" target="_blank" >https://ieeexplore.ieee.org/abstract/document/8331075/metrics#metrics</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JBHI.2018.2823265" target="_blank" >10.1109/JBHI.2018.2823265</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Review of Obstructive Sleep Apnea Detection Approaches

  • Popis výsledku v původním jazyce

    Sleep disorders are a common health condition that can affect numerous aspects of life. Obstructive sleep apnea is one of the most common disorders and is characterized by a reduction or cessation of airflow during sleep. In many countries, this disorder is usually diagnosed in sleep laboratories, by polysomnography, which is an expensive procedure involving much effort for the patient. Multiple systems have been proposed to address this situation, including performing the examination and analysis in the patient&apos;s home, using sensors to detect physiological signals that are automatically analyzed by algorithms. However, the precision of these devices is usually not enough to provide clinical diagnosis. Therefore, the objective of this review is to analyze already existing algorithms that have not been implemented on hardware but have had their performance verified by at least one experiment that aims to detect obstructive sleep apnea to predict trends. The performance of different algorithms and methods for apnea detection through the use of different sensors (pulse oximetry, electrocardiogram, respiration, sound, and combined approaches) has been evaluated. 84 original research articles published from 2003 to 2017 with the potential to be promising diagnostic tools have been selected to cover multiple solutions. This paper could provide valuable information for those researchers who want to carry out a hardware implementation of potential signal processing algorithms.

  • Název v anglickém jazyce

    A Review of Obstructive Sleep Apnea Detection Approaches

  • Popis výsledku anglicky

    Sleep disorders are a common health condition that can affect numerous aspects of life. Obstructive sleep apnea is one of the most common disorders and is characterized by a reduction or cessation of airflow during sleep. In many countries, this disorder is usually diagnosed in sleep laboratories, by polysomnography, which is an expensive procedure involving much effort for the patient. Multiple systems have been proposed to address this situation, including performing the examination and analysis in the patient&apos;s home, using sensors to detect physiological signals that are automatically analyzed by algorithms. However, the precision of these devices is usually not enough to provide clinical diagnosis. Therefore, the objective of this review is to analyze already existing algorithms that have not been implemented on hardware but have had their performance verified by at least one experiment that aims to detect obstructive sleep apnea to predict trends. The performance of different algorithms and methods for apnea detection through the use of different sensors (pulse oximetry, electrocardiogram, respiration, sound, and combined approaches) has been evaluated. 84 original research articles published from 2003 to 2017 with the potential to be promising diagnostic tools have been selected to cover multiple solutions. This paper could provide valuable information for those researchers who want to carry out a hardware implementation of potential signal processing algorithms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Journal of Biomedical and Health Informatics

  • ISSN

    2168-2194

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    825-837

  • Kód UT WoS článku

    000460666400038

  • EID výsledku v databázi Scopus