Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recognition of Patient Groups with Sleep Related Disorders Using Bio-signal Processing and Deep Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F20%3A10418399" target="_blank" >RIV/00216208:11150/20:10418399 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/20:00347458 RIV/00179906:_____/20:10418399 RIV/60461373:22340/20:43920987

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qQBpZV026F" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qQBpZV026F</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s20092594" target="_blank" >10.3390/s20092594</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recognition of Patient Groups with Sleep Related Disorders Using Bio-signal Processing and Deep Learning

  • Popis výsledku v původním jazyce

    Accurately diagnosing sleep disorders is essential for clinical assessments and treatments. Polysomnography (PSG) has long been used for detection of various sleep disorders. In this research, electrocardiography (ECG) and electromayography (EMG) have been used for recognition of breathing and movement-related sleep disorders. Bio-signal processing has been performed by extracting EMG features exploiting entropy and statistical moments, in addition to developing an iterative pulse peak detection algorithm using synchrosqueezed wavelet transform (SSWT) for reliable extraction of heart rate and breathing-related features from ECG. A deep learning framework has been designed to incorporate EMG and ECG features. The framework has been used to classify four groups: healthy subjects, patients with obstructive sleep apnea (OSA), patients with restless leg syndrome (RLS) and patients with both OSA and RLS. The proposed deep learning framework produced a mean accuracy of 72% and weighted F1 score of 0.57 across subjects for our formulated four-class problem.

  • Název v anglickém jazyce

    Recognition of Patient Groups with Sleep Related Disorders Using Bio-signal Processing and Deep Learning

  • Popis výsledku anglicky

    Accurately diagnosing sleep disorders is essential for clinical assessments and treatments. Polysomnography (PSG) has long been used for detection of various sleep disorders. In this research, electrocardiography (ECG) and electromayography (EMG) have been used for recognition of breathing and movement-related sleep disorders. Bio-signal processing has been performed by extracting EMG features exploiting entropy and statistical moments, in addition to developing an iterative pulse peak detection algorithm using synchrosqueezed wavelet transform (SSWT) for reliable extraction of heart rate and breathing-related features from ECG. A deep learning framework has been designed to incorporate EMG and ECG features. The framework has been used to classify four groups: healthy subjects, patients with obstructive sleep apnea (OSA), patients with restless leg syndrome (RLS) and patients with both OSA and RLS. The proposed deep learning framework produced a mean accuracy of 72% and weighted F1 score of 0.57 across subjects for our formulated four-class problem.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30502 - Other medical science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007441" target="_blank" >EF17_048/0007441: PERSONMED - Centrum rozvoje personalizované medicíny u věkem podmíněných onemocnění</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sensors

  • ISSN

    1424-8220

  • e-ISSN

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    14

  • Strana od-do

    2594

  • Kód UT WoS článku

    000537106200158

  • EID výsledku v databázi Scopus

    2-s2.0-85084328394