Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Adaptive Sleep Apnea Detection Model using Multi Cascaded Atrous based Deep Learning Schemes with Hybrid Artificial Humming Bird Pity Beetle Algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10253237" target="_blank" >RIV/61989100:27230/23:10253237 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10264064" target="_blank" >https://ieeexplore.ieee.org/document/10264064</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3319452" target="_blank" >10.1109/ACCESS.2023.3319452</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Adaptive Sleep Apnea Detection Model using Multi Cascaded Atrous based Deep Learning Schemes with Hybrid Artificial Humming Bird Pity Beetle Algorithm

  • Popis výsledku v původním jazyce

    Obstructive Sleep Apnea (OSA) is the cessation in breathing that must be identified as early as possible to save the patient&apos;s life. Apart from physical diagnosis, a deep learning model can serve the purpose of detecting the apnea swiftly. The detection largely depends upon biological signals such as ECG, EEG, EMG, etc. Because of the high dimensionality nature of the bio signals, feature extraction is very critical in detecting sleep apnea. Many such feature extraction models were fragile to resolve the complexity issue and failed to reduce the non-robustness nature. To surmount all these issues, a novel adaptive deep learning-based model is designed for detecting the sleep apnea. Here two feature sets have been extracted from the ECG signals: Spectral features through Short Term Fourier Transform (STFT) and QRS analysis followed by an auto encoder to extract the deep temporal features. The novel Artificial Hummingbird Pity Beetle Algorithm (AHPBA) is proposed to choose the optimal features and weight parameters, which assists in concatenation of the two feature sets,. Then these fused features were given into Multi Cascaded Atrous based Deep Learning Schemes (MCA-DLS) for classification purpose, then it is further optimized by AHPBA by maximizing the variance.. MCA-DLS have performed well compared to classifying the signals individually using One Dimensional Convolutional Neural Networks (1DCNN), Long Short-Term Memory (LSTM) and Deep Neural Networks (DNN) as the average accuracy of MCA-DLS is 94.51% whereas the other three provides an average accuracy of 90.83%, 91.98%, and 93.25% respectively for the considered datasets. By using APHBA the accuracy of MCA-DLS was improved to 96.4% on average, which is higher than the conventional optimization techniques which are discussed in the result section. Author

  • Název v anglickém jazyce

    An Adaptive Sleep Apnea Detection Model using Multi Cascaded Atrous based Deep Learning Schemes with Hybrid Artificial Humming Bird Pity Beetle Algorithm

  • Popis výsledku anglicky

    Obstructive Sleep Apnea (OSA) is the cessation in breathing that must be identified as early as possible to save the patient&apos;s life. Apart from physical diagnosis, a deep learning model can serve the purpose of detecting the apnea swiftly. The detection largely depends upon biological signals such as ECG, EEG, EMG, etc. Because of the high dimensionality nature of the bio signals, feature extraction is very critical in detecting sleep apnea. Many such feature extraction models were fragile to resolve the complexity issue and failed to reduce the non-robustness nature. To surmount all these issues, a novel adaptive deep learning-based model is designed for detecting the sleep apnea. Here two feature sets have been extracted from the ECG signals: Spectral features through Short Term Fourier Transform (STFT) and QRS analysis followed by an auto encoder to extract the deep temporal features. The novel Artificial Hummingbird Pity Beetle Algorithm (AHPBA) is proposed to choose the optimal features and weight parameters, which assists in concatenation of the two feature sets,. Then these fused features were given into Multi Cascaded Atrous based Deep Learning Schemes (MCA-DLS) for classification purpose, then it is further optimized by AHPBA by maximizing the variance.. MCA-DLS have performed well compared to classifying the signals individually using One Dimensional Convolutional Neural Networks (1DCNN), Long Short-Term Memory (LSTM) and Deep Neural Networks (DNN) as the average accuracy of MCA-DLS is 94.51% whereas the other three provides an average accuracy of 90.83%, 91.98%, and 93.25% respectively for the considered datasets. By using APHBA the accuracy of MCA-DLS was improved to 96.4% on average, which is higher than the conventional optimization techniques which are discussed in the result section. Author

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    20

  • Strana od-do

    113114-113133

  • Kód UT WoS článku

    001092024000001

  • EID výsledku v databázi Scopus

    2-s2.0-85173032607