Comparative Study of Deep Learning Based Sleep Scoring Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43921068" target="_blank" >RIV/60461373:22340/20:43921068 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9296996" target="_blank" >https://ieeexplore.ieee.org/document/9296996</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ELECOM49001.2020.9296996" target="_blank" >10.1109/ELECOM49001.2020.9296996</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Study of Deep Learning Based Sleep Scoring Methods
Popis výsledku v původním jazyce
The paper is devoted to the analysis of multichannel biomedical signals acquired in the sleep laboratory. The whole data set includes 29 overnight records of electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), sound and movement data observed with a sampling frequency of 200 Hz, and breathing records (Flow) acquired with a sampling frequency of 10 Hz, among others. The methodology used for their processing includes their filtering, feature extraction and classification using both standard and deep learning classification methods as well. The goal of the paper is (i) in presentation of the deep learning machine learning in the frequency domain without any specification of features, (ii) in comparison with results obtained by the classical approach based on the two layer neural network model and initial specification of signal features, and (iii) in comparison of separation of the Wake sleep stage from the REM, NonRem1, NonREM2, and NonREM3 sleep stages using the deep learning method. The best separation accuracy of 92.12 % (with the loss value 0.19) was achieved for the separation of the Wake and NonREM3 stages for a single EEG channel and data segments 30s long. Results suggest that the deep learning strategy can help with sleep stages classification in the clinical environment.
Název v anglickém jazyce
Comparative Study of Deep Learning Based Sleep Scoring Methods
Popis výsledku anglicky
The paper is devoted to the analysis of multichannel biomedical signals acquired in the sleep laboratory. The whole data set includes 29 overnight records of electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), sound and movement data observed with a sampling frequency of 200 Hz, and breathing records (Flow) acquired with a sampling frequency of 10 Hz, among others. The methodology used for their processing includes their filtering, feature extraction and classification using both standard and deep learning classification methods as well. The goal of the paper is (i) in presentation of the deep learning machine learning in the frequency domain without any specification of features, (ii) in comparison with results obtained by the classical approach based on the two layer neural network model and initial specification of signal features, and (iii) in comparison of separation of the Wake sleep stage from the REM, NonRem1, NonREM2, and NonREM3 sleep stages using the deep learning method. The best separation accuracy of 92.12 % (with the loss value 0.19) was achieved for the separation of the Wake and NonREM3 stages for a single EEG channel and data segments 30s long. Results suggest that the deep learning strategy can help with sleep stages classification in the clinical environment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM 2020)
ISBN
978-1-72815-708-5
ISSN
1876-1100
e-ISSN
—
Počet stran výsledku
6
Strana od-do
28-33
Název nakladatele
Springer International Publishing Switzerland
Místo vydání
Cham
Místo konání akce
Balaclava
Datum konání akce
25. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—