Multi-Class Sleep Stage Analysis and Adaptive Pattern Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F18%3A10377471" target="_blank" >RIV/00216208:11150/18:10377471 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/18:00327451 RIV/60461373:22340/18:43915618 RIV/00179906:_____/18:10377471
Výsledek na webu
<a href="https://doi.org/10.3390/app8050697" target="_blank" >https://doi.org/10.3390/app8050697</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app8050697" target="_blank" >10.3390/app8050697</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Class Sleep Stage Analysis and Adaptive Pattern Recognition
Popis výsledku v původním jazyce
Multimodal signal analysis based on sophisticated sensors, efficient communication systems and fast parallel processing methods has a rapidly increasing range of multidisciplinary applications. The present paper is devoted to pattern recognition, machine learning, and the analysis of sleep stages in the detection of sleep disorders using polysomnography (PSG) data, including electroencephalography (EEG), breathing (Flow), and electro-oculogram (EOG) signals. The proposed method is based on the classification of selected features by a neural network system with sigmoidal and softmax transfer functions using Bayesian methods for the evaluation of the probabilities of the separate classes. The application is devoted to the analysis of the sleep stages of 184 individuals with different diagnoses, using EEG and further PSG signals. Data analysis points to an average increase of the length of the Wake stage by 2.7% per 10 years and a decrease of the length of the Rapid Eye Movement (REM) stages by 0.8% per 10 years. The mean classification accuracy for given sets of records and single EEG and multimodal features is 88.7% ( standard deviation, STD: 2.1) and 89.6% (STD:1.9), respectively. The proposed methods enable the use of adaptive learning processes for the detection and classification of health disorders based on prior specialist experience and man-machine interaction.
Název v anglickém jazyce
Multi-Class Sleep Stage Analysis and Adaptive Pattern Recognition
Popis výsledku anglicky
Multimodal signal analysis based on sophisticated sensors, efficient communication systems and fast parallel processing methods has a rapidly increasing range of multidisciplinary applications. The present paper is devoted to pattern recognition, machine learning, and the analysis of sleep stages in the detection of sleep disorders using polysomnography (PSG) data, including electroencephalography (EEG), breathing (Flow), and electro-oculogram (EOG) signals. The proposed method is based on the classification of selected features by a neural network system with sigmoidal and softmax transfer functions using Bayesian methods for the evaluation of the probabilities of the separate classes. The application is devoted to the analysis of the sleep stages of 184 individuals with different diagnoses, using EEG and further PSG signals. Data analysis points to an average increase of the length of the Wake stage by 2.7% per 10 years and a decrease of the length of the Rapid Eye Movement (REM) stages by 0.8% per 10 years. The mean classification accuracy for given sets of records and single EEG and multimodal features is 88.7% ( standard deviation, STD: 2.1) and 89.6% (STD:1.9), respectively. The proposed methods enable the use of adaptive learning processes for the detection and classification of health disorders based on prior specialist experience and man-machine interaction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000437326800044
EID výsledku v databázi Scopus
2-s2.0-85047096680