Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Class Sleep Stage Analysis and Adaptive Pattern Recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F18%3A10377471" target="_blank" >RIV/00216208:11150/18:10377471 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/18:00327451 RIV/60461373:22340/18:43915618 RIV/00179906:_____/18:10377471

  • Výsledek na webu

    <a href="https://doi.org/10.3390/app8050697" target="_blank" >https://doi.org/10.3390/app8050697</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app8050697" target="_blank" >10.3390/app8050697</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Class Sleep Stage Analysis and Adaptive Pattern Recognition

  • Popis výsledku v původním jazyce

    Multimodal signal analysis based on sophisticated sensors, efficient communication systems and fast parallel processing methods has a rapidly increasing range of multidisciplinary applications. The present paper is devoted to pattern recognition, machine learning, and the analysis of sleep stages in the detection of sleep disorders using polysomnography (PSG) data, including electroencephalography (EEG), breathing (Flow), and electro-oculogram (EOG) signals. The proposed method is based on the classification of selected features by a neural network system with sigmoidal and softmax transfer functions using Bayesian methods for the evaluation of the probabilities of the separate classes. The application is devoted to the analysis of the sleep stages of 184 individuals with different diagnoses, using EEG and further PSG signals. Data analysis points to an average increase of the length of the Wake stage by 2.7% per 10 years and a decrease of the length of the Rapid Eye Movement (REM) stages by 0.8% per 10 years. The mean classification accuracy for given sets of records and single EEG and multimodal features is 88.7% ( standard deviation, STD: 2.1) and 89.6% (STD:1.9), respectively. The proposed methods enable the use of adaptive learning processes for the detection and classification of health disorders based on prior specialist experience and man-machine interaction.

  • Název v anglickém jazyce

    Multi-Class Sleep Stage Analysis and Adaptive Pattern Recognition

  • Popis výsledku anglicky

    Multimodal signal analysis based on sophisticated sensors, efficient communication systems and fast parallel processing methods has a rapidly increasing range of multidisciplinary applications. The present paper is devoted to pattern recognition, machine learning, and the analysis of sleep stages in the detection of sleep disorders using polysomnography (PSG) data, including electroencephalography (EEG), breathing (Flow), and electro-oculogram (EOG) signals. The proposed method is based on the classification of selected features by a neural network system with sigmoidal and softmax transfer functions using Bayesian methods for the evaluation of the probabilities of the separate classes. The application is devoted to the analysis of the sleep stages of 184 individuals with different diagnoses, using EEG and further PSG signals. Data analysis points to an average increase of the length of the Wake stage by 2.7% per 10 years and a decrease of the length of the Rapid Eye Movement (REM) stages by 0.8% per 10 years. The mean classification accuracy for given sets of records and single EEG and multimodal features is 88.7% ( standard deviation, STD: 2.1) and 89.6% (STD:1.9), respectively. The proposed methods enable the use of adaptive learning processes for the detection and classification of health disorders based on prior specialist experience and man-machine interaction.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000437326800044

  • EID výsledku v databázi Scopus

    2-s2.0-85047096680