Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F19%3A00071108" target="_blank" >RIV/00159816:_____/19:00071108 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14740/19:00109991

  • Výsledek na webu

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217922" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217922</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0217922" target="_blank" >10.1371/journal.pone.0217922</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease

  • Popis výsledku v původním jazyce

    To meet the need for Parkinson&apos;s disease biomarkers and evidence for amount and distribution of pathological changes, MRI diffusion tensor imaging (DTI) has been explored in a number of previous studies. However, conflicting results warrant further investigations. As tissue microstructure, particularly of the grey matter, is heterogeneous, a more precise diffusion model may benefit tissue characterization. The purpose of this study was to analyze the diffusion-based imaging technique restriction spectrum imaging (RSI) and DTI, and their ability to detect microstructural changes within brain regions associated with motor function in Parkinson&apos;s disease. Diffusion weighted (DW) MR images of a total of 100 individuals, (46 Parkinson&apos;s disease patients and 54 healthy controls) were collected using b-values of 0-4000s/mm(2). Output diffusion-based maps were estimated based on the RSI-model combining the full set of DW-images (Cellular Index (CI), Neurite Density (ND)) and DTI-model combining b = 0 and b = 1000 s/mm(2) (fractional anisotropy (FA), Axial-, Mean-and Radial diffusivity (AD, MD, RD)). All parametric maps were analyzed in a voxel-wise group analysis, with focus on typical brain regions associated with Parkinson&apos;s disease pathology. CI, ND and DTI diffusivity metrics (AD, MD, RD) demonstrated the ability to differentiate between groups, with strongest performance within the thalamus, prone to pathology in Parkinson&apos;s disease. Our results indicate that RSI may improve the predictive power of diffusion-based MRI, and provide additional information when combined with the standard diffusivity measurements. In the absence of major atrophy, diffusion techniques may reveal microstructural pathology. Our results suggest that protocols for MRI diffusion imaging may be adapted to more sensitive detection of pathology at different sites of the central nervous system.

  • Název v anglickém jazyce

    Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease

  • Popis výsledku anglicky

    To meet the need for Parkinson&apos;s disease biomarkers and evidence for amount and distribution of pathological changes, MRI diffusion tensor imaging (DTI) has been explored in a number of previous studies. However, conflicting results warrant further investigations. As tissue microstructure, particularly of the grey matter, is heterogeneous, a more precise diffusion model may benefit tissue characterization. The purpose of this study was to analyze the diffusion-based imaging technique restriction spectrum imaging (RSI) and DTI, and their ability to detect microstructural changes within brain regions associated with motor function in Parkinson&apos;s disease. Diffusion weighted (DW) MR images of a total of 100 individuals, (46 Parkinson&apos;s disease patients and 54 healthy controls) were collected using b-values of 0-4000s/mm(2). Output diffusion-based maps were estimated based on the RSI-model combining the full set of DW-images (Cellular Index (CI), Neurite Density (ND)) and DTI-model combining b = 0 and b = 1000 s/mm(2) (fractional anisotropy (FA), Axial-, Mean-and Radial diffusivity (AD, MD, RD)). All parametric maps were analyzed in a voxel-wise group analysis, with focus on typical brain regions associated with Parkinson&apos;s disease pathology. CI, ND and DTI diffusivity metrics (AD, MD, RD) demonstrated the ability to differentiate between groups, with strongest performance within the thalamus, prone to pathology in Parkinson&apos;s disease. Our results indicate that RSI may improve the predictive power of diffusion-based MRI, and provide additional information when combined with the standard diffusivity measurements. In the absence of major atrophy, diffusion techniques may reveal microstructural pathology. Our results suggest that protocols for MRI diffusion imaging may be adapted to more sensitive detection of pathology at different sites of the central nervous system.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30103 - Neurosciences (including psychophysiology)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_013%2F0001775" target="_blank" >EF16_013/0001775: Modernizace a podpora výzkumných aktivit národní infrastruktury pro biologické a medicínské zobrazování Czech-BioImaging</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000469759100127

  • EID výsledku v databázi Scopus

    2-s2.0-85066635216