Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients with Acute Ischemic Stroke
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F22%3A00075885" target="_blank" >RIV/00159816:_____/22:00075885 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11150/22:10444215 RIV/00216224:14110/22:00128306
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0010482521008271?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0010482521008271?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2021.105033" target="_blank" >10.1016/j.compbiomed.2021.105033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients with Acute Ischemic Stroke
Popis výsledku v původním jazyce
Identifying the presence and extent of early ischemic changes (EIC) on Non-Contrast Computed Tomography (NCCT) is key to diagnosing and making time-sensitive treatment decisions in patients that present with Acute Ischemic Stroke (AIS). Segmenting EIC on NCCT is however a challenging task. In this study, we investigated a 3D CNN based on nnU-Net, a self-adapting CNN technique that has become the state-of-the-art in medical image segmentation, for segmenting EIC in NCCT of AIS patients. We trained and tested this model on a sizeable and heterogenous dataset of 534 patients, split into 438 for training and validation and 96 for testing. On this test set, we additionally assessed the inter-rater performance by comparing the proposed approach against two reference segmentation annotations by expert neuroradiologist readers, using this as the benchmark against which to compare our model. In terms of spatial agreement, we report median Dice Similarity Coefficients (DSCs) of 39.8% for the model vs. Reader-1, 39.4% for the model vs. Reader-2, and 55.6% for Reader-2 vs. Reader-1. In terms of lesion volume agreement, we report Intraclass Correlation Coefficients (ICCs) of 83.4% for model vs. Reader-1, 80.4% for model vs. Reader-2, and 94.8% for Reader-2 vs. Reader-1. Based on these results, we conclude that our model performs well relative to expert human performance and therefore may be useful as a decision-aid for clinicians.
Název v anglickém jazyce
Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients with Acute Ischemic Stroke
Popis výsledku anglicky
Identifying the presence and extent of early ischemic changes (EIC) on Non-Contrast Computed Tomography (NCCT) is key to diagnosing and making time-sensitive treatment decisions in patients that present with Acute Ischemic Stroke (AIS). Segmenting EIC on NCCT is however a challenging task. In this study, we investigated a 3D CNN based on nnU-Net, a self-adapting CNN technique that has become the state-of-the-art in medical image segmentation, for segmenting EIC in NCCT of AIS patients. We trained and tested this model on a sizeable and heterogenous dataset of 534 patients, split into 438 for training and validation and 96 for testing. On this test set, we additionally assessed the inter-rater performance by comparing the proposed approach against two reference segmentation annotations by expert neuroradiologist readers, using this as the benchmark against which to compare our model. In terms of spatial agreement, we report median Dice Similarity Coefficients (DSCs) of 39.8% for the model vs. Reader-1, 39.4% for the model vs. Reader-2, and 55.6% for Reader-2 vs. Reader-1. In terms of lesion volume agreement, we report Intraclass Correlation Coefficients (ICCs) of 83.4% for model vs. Reader-1, 80.4% for model vs. Reader-2, and 94.8% for Reader-2 vs. Reader-1. Based on these results, we conclude that our model performs well relative to expert human performance and therefore may be useful as a decision-aid for clinicians.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30100 - Basic medicine
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers in Biology and Medicine
ISSN
0010-4825
e-ISSN
1879-0534
Svazek periodika
141
Číslo periodika v rámci svazku
FEB 2022
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
105033
Kód UT WoS článku
000788076100001
EID výsledku v databázi Scopus
2-s2.0-85119449411