Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting DWI-FLAIR mismatch on NCCT: the role of artificial intelligence in hyperacute decision making

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F23%3A00078764" target="_blank" >RIV/00159816:_____/23:00078764 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14110/23:00133283

  • Výsledek na webu

    <a href="https://www.frontiersin.org/articles/10.3389/fneur.2023.1201223/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fneur.2023.1201223/full</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fneur.2023.1201223" target="_blank" >10.3389/fneur.2023.1201223</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting DWI-FLAIR mismatch on NCCT: the role of artificial intelligence in hyperacute decision making

  • Popis výsledku v původním jazyce

    BackgroundThe presence of diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) mismatch was used to determine eligibility for intravenous thrombolysis in clinical trials. However, due to the restricted availability of MRI and the ambiguity of image assessment, it is not widely implemented in clinical practice. MethodsA total of 222 acute ischemic stroke patients underwent non-contrast computed tomography (NCCT), DWI, and FLAIR within 1 h of one another. Human experts manually segmented ischemic lesions on DWI and FLAIR images and independently graded the presence of DWI-FLAIR mismatch. Deep learning (DL) models based on the nnU-net architecture were developed to predict ischemic lesions visible on DWI and FLAIR images using NCCT images. Inexperienced neurologists evaluated the DWI-FLAIR mismatch on NCCT images without and with the model&apos;s results. ResultsThe mean age of included subjects was 71.8 &amp; PLUSMN; 12.8 years, 123 (55%) were male, and the baseline NIHSS score was a median of 11 [IQR, 6-18]. All images were taken in the following order: NCCT - DWI - FLAIR, starting after a median of 139 [81-326] min after the time of the last known well. Intravenous thrombolysis was administered in 120 patients (54%) after NCCT. The DL model&apos;s prediction on NCCT images revealed a Dice coefficient and volume correlation of 39.1% and 0.76 for DWI lesions and 18.9% and 0.61 for FLAIR lesions. In the subgroup with 15 mL or greater lesion volume, the evaluation of DWI-FLAIR mismatch from NCCT by inexperienced neurologists improved in accuracy (from 0.537 to 0.610) and AUC-ROC (from 0.493 to 0.613). ConclusionThe DWI-FLAIR mismatch may be reckoned using NCCT images through advanced artificial intelligence techniques.

  • Název v anglickém jazyce

    Predicting DWI-FLAIR mismatch on NCCT: the role of artificial intelligence in hyperacute decision making

  • Popis výsledku anglicky

    BackgroundThe presence of diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) mismatch was used to determine eligibility for intravenous thrombolysis in clinical trials. However, due to the restricted availability of MRI and the ambiguity of image assessment, it is not widely implemented in clinical practice. MethodsA total of 222 acute ischemic stroke patients underwent non-contrast computed tomography (NCCT), DWI, and FLAIR within 1 h of one another. Human experts manually segmented ischemic lesions on DWI and FLAIR images and independently graded the presence of DWI-FLAIR mismatch. Deep learning (DL) models based on the nnU-net architecture were developed to predict ischemic lesions visible on DWI and FLAIR images using NCCT images. Inexperienced neurologists evaluated the DWI-FLAIR mismatch on NCCT images without and with the model&apos;s results. ResultsThe mean age of included subjects was 71.8 &amp; PLUSMN; 12.8 years, 123 (55%) were male, and the baseline NIHSS score was a median of 11 [IQR, 6-18]. All images were taken in the following order: NCCT - DWI - FLAIR, starting after a median of 139 [81-326] min after the time of the last known well. Intravenous thrombolysis was administered in 120 patients (54%) after NCCT. The DL model&apos;s prediction on NCCT images revealed a Dice coefficient and volume correlation of 39.1% and 0.76 for DWI lesions and 18.9% and 0.61 for FLAIR lesions. In the subgroup with 15 mL or greater lesion volume, the evaluation of DWI-FLAIR mismatch from NCCT by inexperienced neurologists improved in accuracy (from 0.537 to 0.610) and AUC-ROC (from 0.493 to 0.613). ConclusionThe DWI-FLAIR mismatch may be reckoned using NCCT images through advanced artificial intelligence techniques.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30210 - Clinical neurology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Frontiers in Neurology

  • ISSN

    1664-2295

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    JUN 12

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    10

  • Strana od-do

    1201223

  • Kód UT WoS článku

    001013166500001

  • EID výsledku v databázi Scopus

    2-s2.0-85163631325