Hyaluronic acid-based hydrogels with tunable mechanics improved structural and contractile properties of cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00081022" target="_blank" >RIV/00159816:_____/24:00081022 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14740/24:00135617
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S2772950824000621" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S2772950824000621</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bioadv.2024.213819" target="_blank" >10.1016/j.bioadv.2024.213819</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hyaluronic acid-based hydrogels with tunable mechanics improved structural and contractile properties of cells
Popis výsledku v původním jazyce
Extracellular matrix (ECM) regulates cellular responses through mechanotransduction. The standard approach of in vitro culturing on plastic surfaces overlooks this phenomenon, so there is a need for biocompatible materials that exhibit adjustable mechanical and structural properties, promote cell adhesion and proliferation at low cost and for use in 2D or 3D cell cultures. This study presents a new tunable hydrogel system prepared from highmolecular hyaluronic acid (HA), Bovine serum albumin (BSA), and gelatin cross-linked using EDC/NHS. Hydrogels with Young's moduli (E) ranging from subunit to units of kilopascals were prepared by gradually increasing HA and BSA concentrations. Concentrated high-molecular HA network led to stiffer hydrogel with lower cluster size and swelling capacity. Medium and oxygen diffusion capability of all hydrogels showed they are suitable for 3D cell cultures. Mechanical and structural changes of mouse embryonic fibroblasts (MEFs) on hydrogels were compared with cells on standard cultivation surfaces. Experiments showed that hydrogels have suitable mechanical and cell adhesion capabilities, resulting in structural changes of actin filaments. Lastly, applying hydrogel for a more complex HL-1 cell line revealed improved mechanical and electrophysiological contractile properties.
Název v anglickém jazyce
Hyaluronic acid-based hydrogels with tunable mechanics improved structural and contractile properties of cells
Popis výsledku anglicky
Extracellular matrix (ECM) regulates cellular responses through mechanotransduction. The standard approach of in vitro culturing on plastic surfaces overlooks this phenomenon, so there is a need for biocompatible materials that exhibit adjustable mechanical and structural properties, promote cell adhesion and proliferation at low cost and for use in 2D or 3D cell cultures. This study presents a new tunable hydrogel system prepared from highmolecular hyaluronic acid (HA), Bovine serum albumin (BSA), and gelatin cross-linked using EDC/NHS. Hydrogels with Young's moduli (E) ranging from subunit to units of kilopascals were prepared by gradually increasing HA and BSA concentrations. Concentrated high-molecular HA network led to stiffer hydrogel with lower cluster size and swelling capacity. Medium and oxygen diffusion capability of all hydrogels showed they are suitable for 3D cell cultures. Mechanical and structural changes of mouse embryonic fibroblasts (MEFs) on hydrogels were compared with cells on standard cultivation surfaces. Experiments showed that hydrogels have suitable mechanical and cell adhesion capabilities, resulting in structural changes of actin filaments. Lastly, applying hydrogel for a more complex HL-1 cell line revealed improved mechanical and electrophysiological contractile properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10601 - Cell biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomaterials Advances
ISSN
2772-9508
e-ISSN
2772-9508
Svazek periodika
159
Číslo periodika v rámci svazku
MAY 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
213819
Kód UT WoS článku
001218651500001
EID výsledku v databázi Scopus
—