Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00081078" target="_blank" >RIV/00159816:_____/24:00081078 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14110/24:00136421 RIV/00216208:11110/24:10483059 RIV/00216305:26220/24:PU151564 RIV/00064165:_____/24:10483059

  • Výsledek na webu

    <a href="https://qims.amegroups.org/article/view/123434/html" target="_blank" >https://qims.amegroups.org/article/view/123434/html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21037/qims-23-1488" target="_blank" >10.21037/qims-23-1488</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time

  • Popis výsledku v původním jazyce

    Background: Deep-learning-based reconstruction (DLR) improves the quality of magnetic resonance (MR) images which allows faster acquisitions. The aim of this study was to compare the image quality of standard and accelerated T2 weighted turbo-spin-echo (TSE) images of the prostate reconstructed with and without DLR and to find associations between perceived image quality and calculated image characteristics. Methods: In a cohort of 47 prospectively enrolled consecutive patients referred for bi-parametric prostate magnetic resonance imaging (MRI), two T2-TSE acquisitions in the transverse plane were acquired on a 3T scanner-a standard T2-TSE sequence and a short sequence accelerated by a factor of two using compressed sensing (CS). The images were reconstructed with and without DLR in super-resolution mode. The image quality was rated in six domains. Signal-to-noise ratio (SNR), and image sharpness were measured. Results: The mean acquisition time was 281 +/- 23 s for the standard and 140 +/- 12 s for the short acquisition (P&lt;0.0001). DLR images had higher sharpness compared to non-DLR (P&lt;0.001). Short and short-DLR had lower SNR than the standard and standard-DLR (P&lt;0.001). The perceived image quality of short-DLR was rated better in all categories compared to the standard sequence (P&lt;0.001 to P=0.004). All domains of subjective evaluation were correlated with measured image sharpness (P&lt;0.001). Conclusions: T2-TSE acquisition of the prostate accelerated using CS combined with DLR reconstruction provides images with increased sharpness that have a superior quality as perceived by human readers compared to standard T2-TSE. The perceived image quality is correlated with measured image contrast.

  • Název v anglickém jazyce

    Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time

  • Popis výsledku anglicky

    Background: Deep-learning-based reconstruction (DLR) improves the quality of magnetic resonance (MR) images which allows faster acquisitions. The aim of this study was to compare the image quality of standard and accelerated T2 weighted turbo-spin-echo (TSE) images of the prostate reconstructed with and without DLR and to find associations between perceived image quality and calculated image characteristics. Methods: In a cohort of 47 prospectively enrolled consecutive patients referred for bi-parametric prostate magnetic resonance imaging (MRI), two T2-TSE acquisitions in the transverse plane were acquired on a 3T scanner-a standard T2-TSE sequence and a short sequence accelerated by a factor of two using compressed sensing (CS). The images were reconstructed with and without DLR in super-resolution mode. The image quality was rated in six domains. Signal-to-noise ratio (SNR), and image sharpness were measured. Results: The mean acquisition time was 281 +/- 23 s for the standard and 140 +/- 12 s for the short acquisition (P&lt;0.0001). DLR images had higher sharpness compared to non-DLR (P&lt;0.001). Short and short-DLR had lower SNR than the standard and standard-DLR (P&lt;0.001). The perceived image quality of short-DLR was rated better in all categories compared to the standard sequence (P&lt;0.001 to P=0.004). All domains of subjective evaluation were correlated with measured image sharpness (P&lt;0.001). Conclusions: T2-TSE acquisition of the prostate accelerated using CS combined with DLR reconstruction provides images with increased sharpness that have a superior quality as perceived by human readers compared to standard T2-TSE. The perceived image quality is correlated with measured image contrast.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30224 - Radiology, nuclear medicine and medical imaging

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Quantitative Imaging in Medicine and Surgery

  • ISSN

    2223-4292

  • e-ISSN

    2223-4306

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CN - Čínská lidová republika

  • Počet stran výsledku

    11

  • Strana od-do

    3534-3544

  • Kód UT WoS článku

    001250132200023

  • EID výsledku v databázi Scopus