AggreProt: a web server for predicting and engineering aggregation prone regions in proteins
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00081379" target="_blank" >RIV/00159816:_____/24:00081379 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/24:00136705 RIV/61989100:27740/24:10255789
Výsledek na webu
<a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC11223854/pdf/gkae420.pdf" target="_blank" >https://pmc.ncbi.nlm.nih.gov/articles/PMC11223854/pdf/gkae420.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/nar/gkae420" target="_blank" >10.1093/nar/gkae420</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AggreProt: a web server for predicting and engineering aggregation prone regions in proteins
Popis výsledku v původním jazyce
Recombinant proteins play pivotal roles in numerous applications including industrial biocatalysts or therapeutics. Despite the recent progress in computational protein structure prediction, protein solubility and reduced aggregation propensity remain challenging attributes to design. Identification of aggregation-prone regions is essential for understanding misfolding diseases or designing efficient protein-based technologies, and as such has a great socio-economic impact. Here, we introduce AggreProt, a user-friendly webserver that automatically exploits an ensemble of deep neural networks to predict aggregation-prone regions (APRs) in protein sequences. Trained on experimentally evaluated hexapeptides, AggreProt compares to or outperforms state-of-the-art algorithms on two independent benchmark datasets. The server provides per-residue aggregation profiles along with information on solvent accessibility and transmembrane propensity within an intuitive interface with interactive sequence and structure viewers for comprehensive analysis. We demonstrate AggreProt efficacy in predicting differential aggregation behaviours in proteins on several use cases, which emphasize its potential for guiding protein engineering strategies towards decreased aggregation propensity and improved solubility. The webserver is freely available and accessible at https://loschmidt.chemi.muni.cz/aggreprot/. Graphical Abstract
Název v anglickém jazyce
AggreProt: a web server for predicting and engineering aggregation prone regions in proteins
Popis výsledku anglicky
Recombinant proteins play pivotal roles in numerous applications including industrial biocatalysts or therapeutics. Despite the recent progress in computational protein structure prediction, protein solubility and reduced aggregation propensity remain challenging attributes to design. Identification of aggregation-prone regions is essential for understanding misfolding diseases or designing efficient protein-based technologies, and as such has a great socio-economic impact. Here, we introduce AggreProt, a user-friendly webserver that automatically exploits an ensemble of deep neural networks to predict aggregation-prone regions (APRs) in protein sequences. Trained on experimentally evaluated hexapeptides, AggreProt compares to or outperforms state-of-the-art algorithms on two independent benchmark datasets. The server provides per-residue aggregation profiles along with information on solvent accessibility and transmembrane propensity within an intuitive interface with interactive sequence and structure viewers for comprehensive analysis. We demonstrate AggreProt efficacy in predicting differential aggregation behaviours in proteins on several use cases, which emphasize its potential for guiding protein engineering strategies towards decreased aggregation propensity and improved solubility. The webserver is freely available and accessible at https://loschmidt.chemi.muni.cz/aggreprot/. Graphical Abstract
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nucleic Acids Research
ISSN
0305-1048
e-ISSN
1362-4962
Svazek periodika
52
Číslo periodika v rámci svazku
W1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
"W159"-"W169"
Kód UT WoS článku
001233323700001
EID výsledku v databázi Scopus
—