Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme-ligand complexes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F24%3A00081403" target="_blank" >RIV/00159816:_____/24:00081403 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/24:00137540
Výsledek na webu
<a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC11481355/pdf/13321_2024_Article_907.pdf" target="_blank" >https://pmc.ncbi.nlm.nih.gov/articles/PMC11481355/pdf/13321_2024_Article_907.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13321-024-00907-z" target="_blank" >10.1186/s13321-024-00907-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme-ligand complexes
Popis výsledku v původním jazyce
Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme-ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.Scientific contributionsThe pipeline introduced in this work allows for the detailed analysis of a large set of protein-ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git. The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/.
Název v anglickém jazyce
Large-scale annotation of biochemically relevant pockets and tunnels in cognate enzyme-ligand complexes
Popis výsledku anglicky
Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme-ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.Scientific contributionsThe pipeline introduced in this work allows for the detailed analysis of a large set of protein-ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git. The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cheminformatics
ISSN
1758-2946
e-ISSN
1758-2946
Svazek periodika
16
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
114
Kód UT WoS článku
001332053400001
EID výsledku v databázi Scopus
—