Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Composition and Spectral Characterization of Mixed-Radiation Fields With Enhanced Discrimination by Quantum Imaging Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00177016%3A_____%2F24%3AN0000062" target="_blank" >RIV/00177016:_____/24:N0000062 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10445369" target="_blank" >https://ieeexplore.ieee.org/document/10445369</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TNS.2024.3369972" target="_blank" >10.1109/TNS.2024.3369972</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Composition and Spectral Characterization of Mixed-Radiation Fields With Enhanced Discrimination by Quantum Imaging Detection

  • Popis výsledku v původním jazyce

    Mixed-radiation fields in environments such as particle radiotherapy and outer space exhibit large complexity in terms of composition and spectral distribution which are difficult to measure in detail. For this purpose, we present a high-sensitivity technique using the pixel detector Timepix3 to measure the composition and spectral-tracking characterization of secondary fields produced in proton radiotherapy. Particle-event classes are resolved into broad groups of high-energy transfer particles (HETPs), such as protons, ions, and neutrons, as well as low-energy transfer particles (LETPs), such as electrons, X-rays, and, partly, low-energy gamma rays. The quantum-imaging capability of Timepix3 is exploited to enhance the resolving power for particle-type classification. The particle tracks are analyzed by spectral-sensitive pattern recognition algorithms. The response matrix for Timepix3 is newly derived and is based on experimental calibrations in well-defined radiation fields including in-beam rotational scans of protons performed at various energies and directions. Clinical proton beams of radiotherapeutic intensities and energies in the range 225-12 MeV were used in experimental configurations with and without a tissue-equivalent phantom. Detailed results of radiation components can be used to produce total and partial particle fluxes, dose rate, absorbed dose, deposited energy, and linear-energy-transfer (LET) spectra. Dedicated Monte Carlo (MC) simulations are compared with experimental results of field composition, particle fluence, and deposited energy. The numerical information aids the interpretation of experimental data, which includes also secondary neutrons. The technique and developed methodology can be applied for research and routine measurements in environments of varying complexity.

  • Název v anglickém jazyce

    Composition and Spectral Characterization of Mixed-Radiation Fields With Enhanced Discrimination by Quantum Imaging Detection

  • Popis výsledku anglicky

    Mixed-radiation fields in environments such as particle radiotherapy and outer space exhibit large complexity in terms of composition and spectral distribution which are difficult to measure in detail. For this purpose, we present a high-sensitivity technique using the pixel detector Timepix3 to measure the composition and spectral-tracking characterization of secondary fields produced in proton radiotherapy. Particle-event classes are resolved into broad groups of high-energy transfer particles (HETPs), such as protons, ions, and neutrons, as well as low-energy transfer particles (LETPs), such as electrons, X-rays, and, partly, low-energy gamma rays. The quantum-imaging capability of Timepix3 is exploited to enhance the resolving power for particle-type classification. The particle tracks are analyzed by spectral-sensitive pattern recognition algorithms. The response matrix for Timepix3 is newly derived and is based on experimental calibrations in well-defined radiation fields including in-beam rotational scans of protons performed at various energies and directions. Clinical proton beams of radiotherapeutic intensities and energies in the range 225-12 MeV were used in experimental configurations with and without a tissue-equivalent phantom. Detailed results of radiation components can be used to produce total and partial particle fluxes, dose rate, absorbed dose, deposited energy, and linear-energy-transfer (LET) spectra. Dedicated Monte Carlo (MC) simulations are compared with experimental results of field composition, particle fluence, and deposited energy. The numerical information aids the interpretation of experimental data, which includes also secondary neutrons. The technique and developed methodology can be applied for research and routine measurements in environments of varying complexity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Nuclear Science

  • ISSN

    00189499

  • e-ISSN

  • Svazek periodika

    71

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    921 - 931

  • Kód UT WoS článku

    001207225100016

  • EID výsledku v databázi Scopus