Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantum-imaging detection of secondary neutrons in proton radiotherapy fields

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00579721" target="_blank" >RIV/61389005:_____/23:00579721 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1088/1748-0221/18/11/C11011" target="_blank" >https://doi.org/10.1088/1748-0221/18/11/C11011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-0221/18/11/C11011" target="_blank" >10.1088/1748-0221/18/11/C11011</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantum-imaging detection of secondary neutrons in proton radiotherapy fields

  • Popis výsledku v původním jazyce

    Secondary radiation fields encountered in proton radiotherapy environments contain different particle species produced in a broad range of energies and directions. Experimental knowledge of the composition and spectral characteristics of such complex fields is valuable for operation and protection of instruments and personnel, design and optimization of irradiations as well as planning and validation of treatment plans. The neutron component, which are produced with non-negligible yield, is in particular challenging to measure and discriminate from other radiations by conventional detectors. In order to measure in such complex fields the neutron component, both fast and thermal, we make use of the semiconductor pixel detector Timepix3 equipped with a silicon sensor and a neutron converter mask. The detector was before calibrated with well-defined neutron fields. In this work, we characterize the secondary radiation field and examine in particular the neutron component behind a large water-equivalent phantom irradiated by a 190 MeV clinical proton beam. The detected neutrons have a predominant fast neutron component. No thermal neutrons are observed in the measured data. The neutron-induced interactions in the detector are resolved in a high background with enhanced discrimination by quantum-imaging visualization, micrometer scale pattern recognition and high-resolution spectral-sensitive tracking of single particles. Detailed results are provided in wide range in terms of composition of the mixed-radiation field, total and partial fluxes and dose rates as well as particle deposited dose and linear-energy-transfer (LET) spectra.

  • Název v anglickém jazyce

    Quantum-imaging detection of secondary neutrons in proton radiotherapy fields

  • Popis výsledku anglicky

    Secondary radiation fields encountered in proton radiotherapy environments contain different particle species produced in a broad range of energies and directions. Experimental knowledge of the composition and spectral characteristics of such complex fields is valuable for operation and protection of instruments and personnel, design and optimization of irradiations as well as planning and validation of treatment plans. The neutron component, which are produced with non-negligible yield, is in particular challenging to measure and discriminate from other radiations by conventional detectors. In order to measure in such complex fields the neutron component, both fast and thermal, we make use of the semiconductor pixel detector Timepix3 equipped with a silicon sensor and a neutron converter mask. The detector was before calibrated with well-defined neutron fields. In this work, we characterize the secondary radiation field and examine in particular the neutron component behind a large water-equivalent phantom irradiated by a 190 MeV clinical proton beam. The detected neutrons have a predominant fast neutron component. No thermal neutrons are observed in the measured data. The neutron-induced interactions in the detector are resolved in a high background with enhanced discrimination by quantum-imaging visualization, micrometer scale pattern recognition and high-resolution spectral-sensitive tracking of single particles. Detailed results are provided in wide range in terms of composition of the mixed-radiation field, total and partial fluxes and dose rates as well as particle deposited dose and linear-energy-transfer (LET) spectra.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Instrumentation

  • ISSN

    1748-0221

  • e-ISSN

    1748-0221

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    C11011

  • Kód UT WoS článku

    001108176700003

  • EID výsledku v databázi Scopus

    2-s2.0-85178085625