Quantum-imaging detection of secondary neutrons in proton radiotherapy fields
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00579721" target="_blank" >RIV/61389005:_____/23:00579721 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1748-0221/18/11/C11011" target="_blank" >https://doi.org/10.1088/1748-0221/18/11/C11011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1748-0221/18/11/C11011" target="_blank" >10.1088/1748-0221/18/11/C11011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantum-imaging detection of secondary neutrons in proton radiotherapy fields
Popis výsledku v původním jazyce
Secondary radiation fields encountered in proton radiotherapy environments contain different particle species produced in a broad range of energies and directions. Experimental knowledge of the composition and spectral characteristics of such complex fields is valuable for operation and protection of instruments and personnel, design and optimization of irradiations as well as planning and validation of treatment plans. The neutron component, which are produced with non-negligible yield, is in particular challenging to measure and discriminate from other radiations by conventional detectors. In order to measure in such complex fields the neutron component, both fast and thermal, we make use of the semiconductor pixel detector Timepix3 equipped with a silicon sensor and a neutron converter mask. The detector was before calibrated with well-defined neutron fields. In this work, we characterize the secondary radiation field and examine in particular the neutron component behind a large water-equivalent phantom irradiated by a 190 MeV clinical proton beam. The detected neutrons have a predominant fast neutron component. No thermal neutrons are observed in the measured data. The neutron-induced interactions in the detector are resolved in a high background with enhanced discrimination by quantum-imaging visualization, micrometer scale pattern recognition and high-resolution spectral-sensitive tracking of single particles. Detailed results are provided in wide range in terms of composition of the mixed-radiation field, total and partial fluxes and dose rates as well as particle deposited dose and linear-energy-transfer (LET) spectra.
Název v anglickém jazyce
Quantum-imaging detection of secondary neutrons in proton radiotherapy fields
Popis výsledku anglicky
Secondary radiation fields encountered in proton radiotherapy environments contain different particle species produced in a broad range of energies and directions. Experimental knowledge of the composition and spectral characteristics of such complex fields is valuable for operation and protection of instruments and personnel, design and optimization of irradiations as well as planning and validation of treatment plans. The neutron component, which are produced with non-negligible yield, is in particular challenging to measure and discriminate from other radiations by conventional detectors. In order to measure in such complex fields the neutron component, both fast and thermal, we make use of the semiconductor pixel detector Timepix3 equipped with a silicon sensor and a neutron converter mask. The detector was before calibrated with well-defined neutron fields. In this work, we characterize the secondary radiation field and examine in particular the neutron component behind a large water-equivalent phantom irradiated by a 190 MeV clinical proton beam. The detected neutrons have a predominant fast neutron component. No thermal neutrons are observed in the measured data. The neutron-induced interactions in the detector are resolved in a high background with enhanced discrimination by quantum-imaging visualization, micrometer scale pattern recognition and high-resolution spectral-sensitive tracking of single particles. Detailed results are provided in wide range in terms of composition of the mixed-radiation field, total and partial fluxes and dose rates as well as particle deposited dose and linear-energy-transfer (LET) spectra.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Instrumentation
ISSN
1748-0221
e-ISSN
1748-0221
Svazek periodika
18
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
C11011
Kód UT WoS článku
001108176700003
EID výsledku v databázi Scopus
2-s2.0-85178085625