Locally best linear unbiased estimation of regression curves specified by nonlinear constraints on the model parameters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00177016%3A_____%2F24%3AN0000138" target="_blank" >RIV/00177016:_____/24:N0000138 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/abs/10.1142/9789819800674_0012" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/9789819800674_0012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/9789819800674_0012" target="_blank" >10.1142/9789819800674_0012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Locally best linear unbiased estimation of regression curves specified by nonlinear constraints on the model parameters
Popis výsledku v původním jazyce
This paper focuses on parameter estimation within the Errors-in-Variables (EIV) model with nonlinear constraints and the determination of associated uncertainties. This is motivated by a collaborative project in nanoscale material characterization, particularly the assessment of material properties like hardness and elasticity through instrumented indentation testing. Here we confront the challenge of precisely fitting curves specified by nonlinear constraints of the parameters to measurement results which come with associated uncertainties, while simultaneously managing their correlations. Such challenges are prevalent in numerous statistical and metrological applications. Our proposed approach is founded on iterative linearizations of the EIV model with nonlinear parameter constraints specified in implicit form, employing the Locally Best Linear Unbiased Estimation (LBLUE) method. LBLUE is a locally optimal technique known for providing an efficient and robust solution, particularly when dealing with weakly nonlinear models. We refer to this approach as the Optimum Estimate of Function Parameters by Iterated Linearization (OEFPIL). This method has been effectively implemented in various computing environments, including R and C, and is here introduced within the context of MATLAB, complete with illustrative examples. Compared to alternative estimation approaches in EIV models with nonlinear constraints, OEFPIL stands out for its simplicity, versatility, practicality, and computational efficiency, making it an excellent choice for applications in metrology and beyond.
Název v anglickém jazyce
Locally best linear unbiased estimation of regression curves specified by nonlinear constraints on the model parameters
Popis výsledku anglicky
This paper focuses on parameter estimation within the Errors-in-Variables (EIV) model with nonlinear constraints and the determination of associated uncertainties. This is motivated by a collaborative project in nanoscale material characterization, particularly the assessment of material properties like hardness and elasticity through instrumented indentation testing. Here we confront the challenge of precisely fitting curves specified by nonlinear constraints of the parameters to measurement results which come with associated uncertainties, while simultaneously managing their correlations. Such challenges are prevalent in numerous statistical and metrological applications. Our proposed approach is founded on iterative linearizations of the EIV model with nonlinear parameter constraints specified in implicit form, employing the Locally Best Linear Unbiased Estimation (LBLUE) method. LBLUE is a locally optimal technique known for providing an efficient and robust solution, particularly when dealing with weakly nonlinear models. We refer to this approach as the Optimum Estimate of Function Parameters by Iterated Linearization (OEFPIL). This method has been effectively implemented in various computing environments, including R and C, and is here introduced within the context of MATLAB, complete with illustrative examples. Compared to alternative estimation approaches in EIV models with nonlinear constraints, OEFPIL stands out for its simplicity, versatility, practicality, and computational efficiency, making it an excellent choice for applications in metrology and beyond.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/LUASK22008" target="_blank" >LUASK22008: Efektivní výpočetní metody pro charakterizaci materiálů v nanoměřítku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advanced Mathematical and Computational Tools in Metrology and Testing XII
ISBN
—
ISSN
1793-0901
e-ISSN
—
Počet stran výsledku
8
Strana od-do
143-150
Název nakladatele
World Scientific
Místo vydání
—
Místo konání akce
Sarajevo
Datum konání akce
26. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—