Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Locally best linear unbiased estimation of regression curves specified by nonlinear constraints on the model parameters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00177016%3A_____%2F24%3AN0000138" target="_blank" >RIV/00177016:_____/24:N0000138 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.worldscientific.com/doi/abs/10.1142/9789819800674_0012" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/9789819800674_0012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/9789819800674_0012" target="_blank" >10.1142/9789819800674_0012</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Locally best linear unbiased estimation of regression curves specified by nonlinear constraints on the model parameters

  • Popis výsledku v původním jazyce

    This paper focuses on parameter estimation within the Errors-in-Variables (EIV) model with nonlinear constraints and the determination of associated uncertainties. This is motivated by a collaborative project in nanoscale material characterization, particularly the assessment of material properties like hardness and elasticity through instrumented indentation testing. Here we confront the challenge of precisely fitting curves specified by nonlinear constraints of the parameters to measurement results which come with associated uncertainties, while simultaneously managing their correlations. Such challenges are prevalent in numerous statistical and metrological applications. Our proposed approach is founded on iterative linearizations of the EIV model with nonlinear parameter constraints specified in implicit form, employing the Locally Best Linear Unbiased Estimation (LBLUE) method. LBLUE is a locally optimal technique known for providing an efficient and robust solution, particularly when dealing with weakly nonlinear models. We refer to this approach as the Optimum Estimate of Function Parameters by Iterated Linearization (OEFPIL). This method has been effectively implemented in various computing environments, including R and C, and is here introduced within the context of MATLAB, complete with illustrative examples. Compared to alternative estimation approaches in EIV models with nonlinear constraints, OEFPIL stands out for its simplicity, versatility, practicality, and computational efficiency, making it an excellent choice for applications in metrology and beyond.

  • Název v anglickém jazyce

    Locally best linear unbiased estimation of regression curves specified by nonlinear constraints on the model parameters

  • Popis výsledku anglicky

    This paper focuses on parameter estimation within the Errors-in-Variables (EIV) model with nonlinear constraints and the determination of associated uncertainties. This is motivated by a collaborative project in nanoscale material characterization, particularly the assessment of material properties like hardness and elasticity through instrumented indentation testing. Here we confront the challenge of precisely fitting curves specified by nonlinear constraints of the parameters to measurement results which come with associated uncertainties, while simultaneously managing their correlations. Such challenges are prevalent in numerous statistical and metrological applications. Our proposed approach is founded on iterative linearizations of the EIV model with nonlinear parameter constraints specified in implicit form, employing the Locally Best Linear Unbiased Estimation (LBLUE) method. LBLUE is a locally optimal technique known for providing an efficient and robust solution, particularly when dealing with weakly nonlinear models. We refer to this approach as the Optimum Estimate of Function Parameters by Iterated Linearization (OEFPIL). This method has been effectively implemented in various computing environments, including R and C, and is here introduced within the context of MATLAB, complete with illustrative examples. Compared to alternative estimation approaches in EIV models with nonlinear constraints, OEFPIL stands out for its simplicity, versatility, practicality, and computational efficiency, making it an excellent choice for applications in metrology and beyond.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LUASK22008" target="_blank" >LUASK22008: Efektivní výpočetní metody pro charakterizaci materiálů v nanoměřítku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advanced Mathematical and Computational Tools in Metrology and Testing XII

  • ISBN

  • ISSN

    1793-0901

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    143-150

  • Název nakladatele

    World Scientific

  • Místo vydání

  • Místo konání akce

    Sarajevo

  • Datum konání akce

    26. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku