Feature Extraction Using MS Kinect and Data Fusion in Analysis of Sleep Disorders
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00179906%3A_____%2F15%3A10315849" target="_blank" >RIV/00179906:_____/15:10315849 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/15:00239838 RIV/00216208:11150/15:10315849 RIV/60461373:22340/15:43899502
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7347069&isnumber=7347057" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7347069&isnumber=7347057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IWCIM.2015.7347069" target="_blank" >10.1109/IWCIM.2015.7347069</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Feature Extraction Using MS Kinect and Data Fusion in Analysis of Sleep Disorders
Popis výsledku v původním jazyce
Non-contact methods for the tracking of breathing have found noticeable interest in research in recent years motivated by the obtrusiveness of the traditional approach to sleep disordered breathing diagnosis. The low-priced Kinect device released by Microsoft has emerged as a possible alternative hardware in the field of subject's monitoring aimed at sleep disorders analysis. In this paper we present a method for the reconstruction of the patient's breathing during sleep using the depth maps acquired by Kinect. Preliminary operations of resampling and denoising were performed on the images. A reconstruction of the breathing is then obtained by means of image processing and filtering operations; it is synchronized with the corresponding polysomnographic record, features are extracted from both signals and compared. The strong likeness in the mean of the features extracted from the two records (with mean error of 0.87% in frequency and 9.17% in regularity) supports the view that enhancements of this technique may represent a valid alternative to the present approach to sleep monitoring
Název v anglickém jazyce
Feature Extraction Using MS Kinect and Data Fusion in Analysis of Sleep Disorders
Popis výsledku anglicky
Non-contact methods for the tracking of breathing have found noticeable interest in research in recent years motivated by the obtrusiveness of the traditional approach to sleep disordered breathing diagnosis. The low-priced Kinect device released by Microsoft has emerged as a possible alternative hardware in the field of subject's monitoring aimed at sleep disorders analysis. In this paper we present a method for the reconstruction of the patient's breathing during sleep using the depth maps acquired by Kinect. Preliminary operations of resampling and denoising were performed on the images. A reconstruction of the breathing is then obtained by means of image processing and filtering operations; it is synchronized with the corresponding polysomnographic record, features are extracted from both signals and compared. The strong likeness in the mean of the features extracted from the two records (with mean error of 0.87% in frequency and 9.17% in regularity) supports the view that enhancements of this technique may represent a valid alternative to the present approach to sleep monitoring
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2015 International workshop on computational intelligence for multimedia understanding (IWCIM)
ISBN
978-1-4673-8457-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Praha
Datum konání akce
29. 10. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—