Extraction of breathing features using MS Kinect for sleep stage detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F16%3A43901588" target="_blank" >RIV/60461373:22340/16:43901588 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/16:00306151 RIV/00216208:11150/16:10332528
Výsledek na webu
<a href="http://link.springer.com/article/10.1007%2Fs11760-016-0897-2" target="_blank" >http://link.springer.com/article/10.1007%2Fs11760-016-0897-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11760-016-0897-2" target="_blank" >10.1007/s11760-016-0897-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extraction of breathing features using MS Kinect for sleep stage detection
Popis výsledku v původním jazyce
This paper presents the contactless measuring of breathing using the MS Kinect depth sensor and compares the results obtained with records of breathing taken by polysomnography (PSG). We explore the methods of signal denoising, resampling, and spectral analysis of acquired data as well as feature extraction and their Bayesian classification. The proposed methodology was applied for analysis of the long-term monitoring of individuals who were observed simultaneously by PSG and MS Kinect in the sleep laboratory. After time synchronization of polysomnographic and MS Kinect video data, features were extracted from both signals and compared. The average error of the frequency while being evaluated by MS Kinect that was related to that obtained by PSG was 3.75%. The mean accuracy of the Bayesian classification of features into two classes (i.e. wake or sleep) was 88.90 and 88.95% for the PSG and MS Kinect measurements, respectively. The strong likeness of features supports the hypothesis that contactless techniques may represent a valid alternative to the present approach of sleep monitoring, thereby allowing data acquisition in the home environment as well.
Název v anglickém jazyce
Extraction of breathing features using MS Kinect for sleep stage detection
Popis výsledku anglicky
This paper presents the contactless measuring of breathing using the MS Kinect depth sensor and compares the results obtained with records of breathing taken by polysomnography (PSG). We explore the methods of signal denoising, resampling, and spectral analysis of acquired data as well as feature extraction and their Bayesian classification. The proposed methodology was applied for analysis of the long-term monitoring of individuals who were observed simultaneously by PSG and MS Kinect in the sleep laboratory. After time synchronization of polysomnographic and MS Kinect video data, features were extracted from both signals and compared. The average error of the frequency while being evaluated by MS Kinect that was related to that obtained by PSG was 3.75%. The mean accuracy of the Bayesian classification of features into two classes (i.e. wake or sleep) was 88.90 and 88.95% for the PSG and MS Kinect measurements, respectively. The strong likeness of features supports the hypothesis that contactless techniques may represent a valid alternative to the present approach of sleep monitoring, thereby allowing data acquisition in the home environment as well.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal, Image and Video Processing
ISSN
1863-1703
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
1279-1286
Kód UT WoS článku
000382363300013
EID výsledku v databázi Scopus
2-s2.0-84965066072