Nakagami imaging and morphing for multiple sclerosis lesion volume estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00179906%3A_____%2F24%3A10469462" target="_blank" >RIV/00179906:_____/24:10469462 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18450/24:50020617
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6qvDdRfWAo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6qvDdRfWAo</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2023.121250" target="_blank" >10.1016/j.eswa.2023.121250</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nakagami imaging and morphing for multiple sclerosis lesion volume estimation
Popis výsledku v původním jazyce
Monitoring and tracking the size and the number of multiple sclerosis (MS) lesions is very important in clinical medicine to understand the course and estimate the progression of this demyelination disease. The lesions could be identified by the experts with brain magnetic resonance imaging (MRI) technology, especially the fluid attenuated inversion recovery sequence (FLAIR), which generates two-dimensional slices sampled from the three-dimensional space with specified slice thickness and increment values. Not every MRI scan, however, could be contiguous nor overlapping due to many reasons, to prevent from a drastic increase in the overall duration of the scans. Particularly, it is very hard to stabilize a child for hours in the same position; therefore, the specialists keep the scan procedure as short as possible, by increasing the slice thickness and more importantly, reducing the number of slices which cause some consistent gaps emerging between the slices and leading to inconclusive results. Given these facts, we propose a novel procedure to overcome this inadequacy by filling the gaps of incremental MRIs based on a Nakagami imaging and a content-based morphing method generating imaginary frames between the genuine MRI slices. Afterwards, the segmented images are reconstructed in three-dimensional space to estimate the lesion volumes for three consecutive scans of one patient. The results are greatly encouraging that we calculated 95.72% as the mean average percentage accuracy (MAPA) with 92.17% dice score (DSC%); while a little sacrifice in DSC% down to 90.35% provided us a better MAPA of 96.44%; while without morphing, the MAPA was calculated using only the binary ground truth (GT) images as 85.97%. As an expert system, the automated framework we presented would be very beneficial for volume estimations in clinics as well as visualizing the lesions and tracking the progression of MS disease.
Název v anglickém jazyce
Nakagami imaging and morphing for multiple sclerosis lesion volume estimation
Popis výsledku anglicky
Monitoring and tracking the size and the number of multiple sclerosis (MS) lesions is very important in clinical medicine to understand the course and estimate the progression of this demyelination disease. The lesions could be identified by the experts with brain magnetic resonance imaging (MRI) technology, especially the fluid attenuated inversion recovery sequence (FLAIR), which generates two-dimensional slices sampled from the three-dimensional space with specified slice thickness and increment values. Not every MRI scan, however, could be contiguous nor overlapping due to many reasons, to prevent from a drastic increase in the overall duration of the scans. Particularly, it is very hard to stabilize a child for hours in the same position; therefore, the specialists keep the scan procedure as short as possible, by increasing the slice thickness and more importantly, reducing the number of slices which cause some consistent gaps emerging between the slices and leading to inconclusive results. Given these facts, we propose a novel procedure to overcome this inadequacy by filling the gaps of incremental MRIs based on a Nakagami imaging and a content-based morphing method generating imaginary frames between the genuine MRI slices. Afterwards, the segmented images are reconstructed in three-dimensional space to estimate the lesion volumes for three consecutive scans of one patient. The results are greatly encouraging that we calculated 95.72% as the mean average percentage accuracy (MAPA) with 92.17% dice score (DSC%); while a little sacrifice in DSC% down to 90.35% provided us a better MAPA of 96.44%; while without morphing, the MAPA was calculated using only the binary ground truth (GT) images as 85.97%. As an expert system, the automated framework we presented would be very beneficial for volume estimations in clinics as well as visualizing the lesions and tracking the progression of MS disease.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30224 - Radiology, nuclear medicine and medical imaging
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
235
Číslo periodika v rámci svazku
JAN
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
121250
Kód UT WoS článku
001067913600001
EID výsledku v databázi Scopus
2-s2.0-85168795556