Reiterative modeling of combined transcriptomic and proteomic features refines and improves the prediction of early recurrence in squamous cell carcinoma of head and neck
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00209805%3A_____%2F22%3A00079065" target="_blank" >RIV/00209805:_____/22:00079065 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0010482522007168?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010482522007168?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2022.105991" target="_blank" >10.1016/j.compbiomed.2022.105991</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reiterative modeling of combined transcriptomic and proteomic features refines and improves the prediction of early recurrence in squamous cell carcinoma of head and neck
Popis výsledku v původním jazyce
Background: Patients with squamous cell carcinoma of the head and neck (SCCHN) have a high-risk of recurrence. We aimed to develop machine learning methods to identify transcriptomic and proteomic features that provide accurate classification models for predicting risk of early recurrence in SCCHN patients. Methods: Clinical, genomic, transcriptomic and proteomic features distinguishing recurrence risk were examined in SCCHN patients from The Cancer Genome Atlas (TCGA). Recurrence within one year after treatment was classified as high-risk and no recurrence as low-risk. Results: No significant differences in individual clinicopathological characteristics, mutation profiles or mRNA expression patterns were seen between the groups using conventional statistical analysis. Using the machine learning algorithm, extreme gradient boosting (XGBoost), ten proteins (RAD50, 4E-BP1, MYH11, MAP2K1, BECN1, NF2, RAB25, ERRFI1, KDR, SERPINE1) and five mRNAs (PLAUR, DKK1, AXIN2, ANG and VEGFA) made the greatest contribution to classification. These features were used to build improved models in XGBoost, achieving the best discrimination performance when combining transcriptomic and proteomic data, providing an accuracy of 0.939 and an Area Under the ROC Curve (AUC) of 0.951. Conclusions: This study highlights machine learning to identify transcriptomic and proteomic factors that play important roles in predicting risk of recurrence in patients with SCCHN and to develop such models by iterative cycles to enhance their accuracy, thereby aiding the introduction of personalized treatment regimens.
Název v anglickém jazyce
Reiterative modeling of combined transcriptomic and proteomic features refines and improves the prediction of early recurrence in squamous cell carcinoma of head and neck
Popis výsledku anglicky
Background: Patients with squamous cell carcinoma of the head and neck (SCCHN) have a high-risk of recurrence. We aimed to develop machine learning methods to identify transcriptomic and proteomic features that provide accurate classification models for predicting risk of early recurrence in SCCHN patients. Methods: Clinical, genomic, transcriptomic and proteomic features distinguishing recurrence risk were examined in SCCHN patients from The Cancer Genome Atlas (TCGA). Recurrence within one year after treatment was classified as high-risk and no recurrence as low-risk. Results: No significant differences in individual clinicopathological characteristics, mutation profiles or mRNA expression patterns were seen between the groups using conventional statistical analysis. Using the machine learning algorithm, extreme gradient boosting (XGBoost), ten proteins (RAD50, 4E-BP1, MYH11, MAP2K1, BECN1, NF2, RAB25, ERRFI1, KDR, SERPINE1) and five mRNAs (PLAUR, DKK1, AXIN2, ANG and VEGFA) made the greatest contribution to classification. These features were used to build improved models in XGBoost, achieving the best discrimination performance when combining transcriptomic and proteomic data, providing an accuracy of 0.939 and an Area Under the ROC Curve (AUC) of 0.951. Conclusions: This study highlights machine learning to identify transcriptomic and proteomic factors that play important roles in predicting risk of recurrence in patients with SCCHN and to develop such models by iterative cycles to enhance their accuracy, thereby aiding the introduction of personalized treatment regimens.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30204 - Oncology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers in biology and medicine
ISSN
0010-4825
e-ISSN
1879-0534
Svazek periodika
149
Číslo periodika v rámci svazku
October 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
105991
Kód UT WoS článku
000864701300006
EID výsledku v databázi Scopus
2-s2.0-85136150488