Synergy between imputed genetic pathway and clinical information for predicting recurrence in early stage non-small cell lung cancer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00209805%3A_____%2F23%3A00079321" target="_blank" >RIV/00209805:_____/23:00079321 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/23:00131336
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1532046423001454?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1532046423001454?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jbi.2023.104424" target="_blank" >10.1016/j.jbi.2023.104424</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synergy between imputed genetic pathway and clinical information for predicting recurrence in early stage non-small cell lung cancer
Popis výsledku v původním jazyce
OBJECTIVE: Lung cancer exhibits unpredictable recurrence in low-stage tumors and variable responses to different therapeutic interventions. Predicting relapse in early-stage lung cancer can facilitate precision medicine and improve patient survivability. While existing machine learning models rely on clinical data, incorporating genomic information could enhance their efficiency. This study aims to impute and integrate specific types of genomic data with clinical data to improve the accuracy of machine learning models for predicting relapse in early-stage, non-small cell lung cancer patients. METHODS: The study utilized a publicly available TCGA lung cancer cohort and imputed genetic pathway scores into the Spanish Lung Cancer Group (SLCG) data, specifically in 1348 early-stage patients. Initially, tumor recurrence was predicted without imputed pathway scores. Subsequently, the SLCG data were augmented with pathway scores imputed from TCGA. The integrative approach aimed to enhance relapse risk prediction performance. RESULTS: The integrative approach achieved improved relapse risk prediction with the following evaluation metrics: an area under the precision-recall curve (PR-AUC) score of 0.75, an area under the ROC (ROC-AUC) score of 0.80, an F1 score of 0.61, and a Precision of 0.80. The prediction explanation model SHAP (SHapley Additive exPlanations) was employed to explain the machine learning model's predictions. CONCLUSION: We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk while also improving the predictive power by incorporating proxy genomic data not available for specific patients.
Název v anglickém jazyce
Synergy between imputed genetic pathway and clinical information for predicting recurrence in early stage non-small cell lung cancer
Popis výsledku anglicky
OBJECTIVE: Lung cancer exhibits unpredictable recurrence in low-stage tumors and variable responses to different therapeutic interventions. Predicting relapse in early-stage lung cancer can facilitate precision medicine and improve patient survivability. While existing machine learning models rely on clinical data, incorporating genomic information could enhance their efficiency. This study aims to impute and integrate specific types of genomic data with clinical data to improve the accuracy of machine learning models for predicting relapse in early-stage, non-small cell lung cancer patients. METHODS: The study utilized a publicly available TCGA lung cancer cohort and imputed genetic pathway scores into the Spanish Lung Cancer Group (SLCG) data, specifically in 1348 early-stage patients. Initially, tumor recurrence was predicted without imputed pathway scores. Subsequently, the SLCG data were augmented with pathway scores imputed from TCGA. The integrative approach aimed to enhance relapse risk prediction performance. RESULTS: The integrative approach achieved improved relapse risk prediction with the following evaluation metrics: an area under the precision-recall curve (PR-AUC) score of 0.75, an area under the ROC (ROC-AUC) score of 0.80, an F1 score of 0.61, and a Precision of 0.80. The prediction explanation model SHAP (SHapley Additive exPlanations) was employed to explain the machine learning model's predictions. CONCLUSION: We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk while also improving the predictive power by incorporating proxy genomic data not available for specific patients.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of biomedical informatics
ISSN
1532-0464
e-ISSN
1532-0480
Svazek periodika
144
Číslo periodika v rámci svazku
August 2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
104424
Kód UT WoS článku
001030137400001
EID výsledku v databázi Scopus
2-s2.0-85163481485