Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Patients with oral tongue squamous cell carcinoma and co‑existing diabetes exhibit lower recurrence rates and improved survival: Implications for treatment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00209805%3A_____%2F24%3A00079656" target="_blank" >RIV/00209805:_____/24:00079656 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubmed.ncbi.nlm.nih.gov/38385115/" target="_blank" >https://pubmed.ncbi.nlm.nih.gov/38385115/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3892/ol.2024.14275" target="_blank" >10.3892/ol.2024.14275</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Patients with oral tongue squamous cell carcinoma and co‑existing diabetes exhibit lower recurrence rates and improved survival: Implications for treatment

  • Popis výsledku v původním jazyce

    Locoregional recurrences and distant metastases are major problems for patients with squamous cell carcinoma of the head and neck (SCCHN). Because SCCHN is a heterogeneous group of tumours with varying characteristics, the present study concentrated on the subgroup of squamous cell carcinoma of the oral tongue (SCCOT) to investigate the use of machine learning approaches to predict the risk of recurrence from routine clinical data available at diagnosis. The approach also identified the most important parameters that identify and classify recurrence risk. A total of 66 patients with SCCOT were included. Clinical data available at diagnosis were analysed using statistical analysis and machine learning approaches. Tumour recurrence was associated with T stage (P=0.001), radiological neck metastasis (P=0.010) and diabetes (P=0.003). A machine learning model based on the random forest algorithm and with attendant explainability was used. Whilst patients with diabetes were overrepresented in the SCCOT cohort, diabetics had lower recurrence rates (P=0.015 after adjusting for age and other clinical features) and an improved 2-year survival (P=0.025) compared with non-diabetics. Clinical, radiological and histological data available at diagnosis were used to establish a prognostic model for patients with SCCOT. Using machine learning to predict recurrence produced a classification model with 71.2% accuracy. Notably, one of the findings of the feature importance rankings of the model was that diabetics exhibited less recurrence and improved survival compared with non-diabetics, even after accounting for the independent prognostic variables of tumour size and patient age at diagnosis. These data imply that the therapeutic manipulation of glucose levels used to treat diabetes may be useful for patients with SCCOT regardless of their diabetic status. Further studies are warranted to investigate the impact of diabetes in other SCCHN subtypes.

  • Název v anglickém jazyce

    Patients with oral tongue squamous cell carcinoma and co‑existing diabetes exhibit lower recurrence rates and improved survival: Implications for treatment

  • Popis výsledku anglicky

    Locoregional recurrences and distant metastases are major problems for patients with squamous cell carcinoma of the head and neck (SCCHN). Because SCCHN is a heterogeneous group of tumours with varying characteristics, the present study concentrated on the subgroup of squamous cell carcinoma of the oral tongue (SCCOT) to investigate the use of machine learning approaches to predict the risk of recurrence from routine clinical data available at diagnosis. The approach also identified the most important parameters that identify and classify recurrence risk. A total of 66 patients with SCCOT were included. Clinical data available at diagnosis were analysed using statistical analysis and machine learning approaches. Tumour recurrence was associated with T stage (P=0.001), radiological neck metastasis (P=0.010) and diabetes (P=0.003). A machine learning model based on the random forest algorithm and with attendant explainability was used. Whilst patients with diabetes were overrepresented in the SCCOT cohort, diabetics had lower recurrence rates (P=0.015 after adjusting for age and other clinical features) and an improved 2-year survival (P=0.025) compared with non-diabetics. Clinical, radiological and histological data available at diagnosis were used to establish a prognostic model for patients with SCCOT. Using machine learning to predict recurrence produced a classification model with 71.2% accuracy. Notably, one of the findings of the feature importance rankings of the model was that diabetics exhibited less recurrence and improved survival compared with non-diabetics, even after accounting for the independent prognostic variables of tumour size and patient age at diagnosis. These data imply that the therapeutic manipulation of glucose levels used to treat diabetes may be useful for patients with SCCOT regardless of their diabetic status. Further studies are warranted to investigate the impact of diabetes in other SCCHN subtypes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30204 - Oncology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-13188S" target="_blank" >GA21-13188S: Metabolomika a proteostáza v nádorových kmenových buňkách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Oncology letters

  • ISSN

    1792-1074

  • e-ISSN

    1792-1082

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GR - Řecká republika

  • Počet stran výsledku

    8

  • Strana od-do

    142

  • Kód UT WoS článku

    001168821200001

  • EID výsledku v databázi Scopus

    2-s2.0-85185533910