Short-term potentiation effect on pattern recall in sparsely coded neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F12%3A11451" target="_blank" >RIV/00216208:11110/12:11451 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21460/12:00186091
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.neucom.2011.08.021" target="_blank" >http://dx.doi.org/10.1016/j.neucom.2011.08.021</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Short-term potentiation effect on pattern recall in sparsely coded neural network
Popis výsledku v původním jazyce
It has been shown in studies of biological synaptic plasticity that synaptic efficacy can change in a very short time window, compared to the time scale associated with typical neural events. This time scale is small enough to possibly have an effect onpattern recall processes in neural networks. We study properties of a neural network which uses a cyclic Hebb rule. Then we add the short term potentiation of synapses in the recall phase. We show that this approach preserves the ability of the network to recognize the patterns stored by the network and that the network does not respond to other patterns at the same time. We show that this approach dramatically increases the capacity of the network at the cost of a longer pattern recall process. We discuss that the network possesses two types of recall. The fast recall does not need synaptic plasticity to recognize a pattern, while the slower recall utilizes synaptic plasticity. This is something that we all experience in our daily live
Název v anglickém jazyce
Short-term potentiation effect on pattern recall in sparsely coded neural network
Popis výsledku anglicky
It has been shown in studies of biological synaptic plasticity that synaptic efficacy can change in a very short time window, compared to the time scale associated with typical neural events. This time scale is small enough to possibly have an effect onpattern recall processes in neural networks. We study properties of a neural network which uses a cyclic Hebb rule. Then we add the short term potentiation of synapses in the recall phase. We show that this approach preserves the ability of the network to recognize the patterns stored by the network and that the network does not respond to other patterns at the same time. We show that this approach dramatically increases the capacity of the network at the cost of a longer pattern recall process. We discuss that the network possesses two types of recall. The fast recall does not need synaptic plasticity to recognize a pattern, while the slower recall utilizes synaptic plasticity. This is something that we all experience in our daily live
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurocomputing
ISSN
0925-2312
e-ISSN
—
Svazek periodika
77
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
108-113
Kód UT WoS článku
000298206400011
EID výsledku v databázi Scopus
—