Predicting Locations of High-Risk Plaques in Coronary Arteries in Patients Receiving Statin Therapy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F18%3A10376310" target="_blank" >RIV/00216208:11110/18:10376310 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00064165:_____/18:10376310
Výsledek na webu
<a href="https://doi.org/10.1109/TMI.2017.2725443" target="_blank" >https://doi.org/10.1109/TMI.2017.2725443</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TMI.2017.2725443" target="_blank" >10.1109/TMI.2017.2725443</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting Locations of High-Risk Plaques in Coronary Arteries in Patients Receiving Statin Therapy
Popis výsledku v původním jazyce
Features of high-risk coronary artery plaques prone to major adverse cardiac events (MACE) were identified by intravascular ultrasound (IVUS) virtual histology (VH). These plaque features are: thin-cap fibroatheroma (TCFA), plaque burden PB >= 70%, or minimal luminal area MLA <= 4 mm(2). Identification of arterial locations likely to later develop such high-risk plaques may help prevent MACE. We report a machine learning method for prediction of future high-risk coronary plaque locations and types in patients under statin therapy. Sixty-one patients with stable angina on statin therapy underwent baseline and one-year follow-up VH-IVUS non-culprit vessel examinations followed by quantitative image analysis. For each segmented and registered VH-IVUS frame pair (n = 6341), location-specific (approximate to 0.5 mm) vascular features and demographic information at baseline were identified. Seven independent support vector machine classifiers with seven different feature subsets were trained to predict high-risk plaque types one year later. A leave-one-patient-out cross-validation was used to evaluate the prediction power of different feature subsets. The experimental results showed that our machine learning method predicted future TCFA with correctness of 85.9%, 81.7%, and 77.0% (G-mean) for baseline plaque phenotypes of TCFA, thick-cap fibroatheroma, and non-fibroatheroma, respectively. For predicting PB >= 70%, correctness was 80.8% for baseline PB >= 70% and 85.6% for 50% <= PB< 70%. Accuracy of predicted MLA <= 4 mm(2) was 81.6% for baseline MLA <= 4 mm(2) and 80.2% for 4 mm(2) < MLA <= 6 mm(2). Location-specific prediction of future high-risk coronary artery plaques is feasible through machine learning using focal vascular features and demographic variables. Our approach outperforms previously reported results and shows the importance of local factors on high-risk coronary artery plaque development.
Název v anglickém jazyce
Predicting Locations of High-Risk Plaques in Coronary Arteries in Patients Receiving Statin Therapy
Popis výsledku anglicky
Features of high-risk coronary artery plaques prone to major adverse cardiac events (MACE) were identified by intravascular ultrasound (IVUS) virtual histology (VH). These plaque features are: thin-cap fibroatheroma (TCFA), plaque burden PB >= 70%, or minimal luminal area MLA <= 4 mm(2). Identification of arterial locations likely to later develop such high-risk plaques may help prevent MACE. We report a machine learning method for prediction of future high-risk coronary plaque locations and types in patients under statin therapy. Sixty-one patients with stable angina on statin therapy underwent baseline and one-year follow-up VH-IVUS non-culprit vessel examinations followed by quantitative image analysis. For each segmented and registered VH-IVUS frame pair (n = 6341), location-specific (approximate to 0.5 mm) vascular features and demographic information at baseline were identified. Seven independent support vector machine classifiers with seven different feature subsets were trained to predict high-risk plaque types one year later. A leave-one-patient-out cross-validation was used to evaluate the prediction power of different feature subsets. The experimental results showed that our machine learning method predicted future TCFA with correctness of 85.9%, 81.7%, and 77.0% (G-mean) for baseline plaque phenotypes of TCFA, thick-cap fibroatheroma, and non-fibroatheroma, respectively. For predicting PB >= 70%, correctness was 80.8% for baseline PB >= 70% and 85.6% for 50% <= PB< 70%. Accuracy of predicted MLA <= 4 mm(2) was 81.6% for baseline MLA <= 4 mm(2) and 80.2% for 4 mm(2) < MLA <= 6 mm(2). Location-specific prediction of future high-risk coronary artery plaques is feasible through machine learning using focal vascular features and demographic variables. Our approach outperforms previously reported results and shows the importance of local factors on high-risk coronary artery plaque development.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30201 - Cardiac and Cardiovascular systems
Návaznosti výsledku
Projekt
<a href="/cs/project/NT13224" target="_blank" >NT13224: Predikce rozsahu a rizikovosti koronárního postižení a jejich změn při hypolipidemické terapii na základě neinvazivních vyšetření.</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Medical Imaging
ISSN
0278-0062
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
151-161
Kód UT WoS článku
000419346900014
EID výsledku v databázi Scopus
2-s2.0-85023609906