Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic plaque segmentation based on hybrid fuzzy clustering and k nearest neighborhood using virtual histology intravascular ultrasound images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013652" target="_blank" >RIV/62690094:18450/17:50013652 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S1568494616306858?via%3Dihub" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1568494616306858?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2016.12.048" target="_blank" >10.1016/j.asoc.2016.12.048</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic plaque segmentation based on hybrid fuzzy clustering and k nearest neighborhood using virtual histology intravascular ultrasound images

  • Popis výsledku v původním jazyce

    Thin cap fibroatheroma (TCFA) or &quot;vulnerable plaque&quot; is responsible for the majority of coronary artery death. Virtual Histology Intravascular Ultrasound (VH-IVUS) image is a clinically available method for visualizing color coded tissue maps. However, this technique has considerable limitations in providing medical relevant information for identifying vulnerable plaque. The aim of this paper is to improve the identification of TCFA in VH-IVUS image. Therefore, this paper proposes a set of algorithms for segmentation, feature extraction, and plaque type classification to accurately identify TCFA. A hybrid model using the FCM and kNN (HFCM-kNN) is proposed to accurately segment the VH-IVUS image. The proposed technique is capable of eliminating outliers and detecting clusters with different densities in VH-IVUS image. The next process is extracting plaque features to provide an accurate definition of the unstable (vulnerable) plaque. To achieve the above contribution, five algorithms are proposed to extract significant features from VH-IVUS images. Machine learning approaches are applied for training 440 in-vivo images obtained from 8 patients. Results proved the dominance of the proposed method for TCFA detection with accuracy rate of 98.02% compared with the 76.5% obtained by the cardiologist decision. Moreover, by validation of VH-IVUS images and their corresponding Optical Coherence Tomography (OCT) images, accuracy of 92.85% is achieved.

  • Název v anglickém jazyce

    Automatic plaque segmentation based on hybrid fuzzy clustering and k nearest neighborhood using virtual histology intravascular ultrasound images

  • Popis výsledku anglicky

    Thin cap fibroatheroma (TCFA) or &quot;vulnerable plaque&quot; is responsible for the majority of coronary artery death. Virtual Histology Intravascular Ultrasound (VH-IVUS) image is a clinically available method for visualizing color coded tissue maps. However, this technique has considerable limitations in providing medical relevant information for identifying vulnerable plaque. The aim of this paper is to improve the identification of TCFA in VH-IVUS image. Therefore, this paper proposes a set of algorithms for segmentation, feature extraction, and plaque type classification to accurately identify TCFA. A hybrid model using the FCM and kNN (HFCM-kNN) is proposed to accurately segment the VH-IVUS image. The proposed technique is capable of eliminating outliers and detecting clusters with different densities in VH-IVUS image. The next process is extracting plaque features to provide an accurate definition of the unstable (vulnerable) plaque. To achieve the above contribution, five algorithms are proposed to extract significant features from VH-IVUS images. Machine learning approaches are applied for training 440 in-vivo images obtained from 8 patients. Results proved the dominance of the proposed method for TCFA detection with accuracy rate of 98.02% compared with the 76.5% obtained by the cardiologist decision. Moreover, by validation of VH-IVUS images and their corresponding Optical Coherence Tomography (OCT) images, accuracy of 92.85% is achieved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied soft computing

  • ISSN

    1568-4946

  • e-ISSN

  • Svazek periodika

    53

  • Číslo periodika v rámci svazku

    duben

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    380-395

  • Kód UT WoS článku

    000395898900027

  • EID výsledku v databázi Scopus

    2-s2.0-85010304666