Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine-Learning and R in Plastic Surgery - Evaluation of Facial Attractiveness and Classification of Facial Emotions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F20%3A10414956" target="_blank" >RIV/00216208:11110/20:10414956 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21460/20:00336672

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-30604-5_22" target="_blank" >https://doi.org/10.1007/978-3-030-30604-5_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-30604-5_22" target="_blank" >10.1007/978-3-030-30604-5_22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine-Learning and R in Plastic Surgery - Evaluation of Facial Attractiveness and Classification of Facial Emotions

  • Popis výsledku v původním jazyce

    Although facial attractiveness is data-driven and nondependent on a perceiver, traditional statistical methods cannot properly identify relationships between facial geometry and its visual impression. Similarly, classification of facial images into facial emotions is also challenging, since the classification should consider the fact that overall facial impression is always dependent on currently present facial emotion. To address the problems, both profile and portrait facial images of the patients (n = 42) were preprocessed, landmarked, and analyzed via R language. Multivariate regression was carried out to detect indicators increasing facial attractiveness after going through rhinoplasty. Bayesian naive classifiers, decision trees (CART) and neural networks, respectively, were built to classify a new facial image into one of the facial emotions, defined using Ekman-Friesen FACS scale. Nasolabial and nasofrontal angles&apos; enlargement within rhinoplasty increases facial attractiveness (p&lt;0.05). Decision trees proved the geometry of a mouth, then eyebrows and finally eyes affect in this descending order an impact on classified emotion. Neural networks returned the highest accuracy of the classification. Performed machine-learning analyses pointed out which facial features affect facial attractiveness the most and should be therefore treated by plastics surgery procedures. The classification of facial images into emotions show possible associations between facial geometry and facial emotions.

  • Název v anglickém jazyce

    Machine-Learning and R in Plastic Surgery - Evaluation of Facial Attractiveness and Classification of Facial Emotions

  • Popis výsledku anglicky

    Although facial attractiveness is data-driven and nondependent on a perceiver, traditional statistical methods cannot properly identify relationships between facial geometry and its visual impression. Similarly, classification of facial images into facial emotions is also challenging, since the classification should consider the fact that overall facial impression is always dependent on currently present facial emotion. To address the problems, both profile and portrait facial images of the patients (n = 42) were preprocessed, landmarked, and analyzed via R language. Multivariate regression was carried out to detect indicators increasing facial attractiveness after going through rhinoplasty. Bayesian naive classifiers, decision trees (CART) and neural networks, respectively, were built to classify a new facial image into one of the facial emotions, defined using Ekman-Friesen FACS scale. Nasolabial and nasofrontal angles&apos; enlargement within rhinoplasty increases facial attractiveness (p&lt;0.05). Decision trees proved the geometry of a mouth, then eyebrows and finally eyes affect in this descending order an impact on classified emotion. Neural networks returned the highest accuracy of the classification. Performed machine-learning analyses pointed out which facial features affect facial attractiveness the most and should be therefore treated by plastics surgery procedures. The classification of facial images into emotions show possible associations between facial geometry and facial emotions.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30212 - Surgery

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Information systems Architecture and Technology: Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology - ISAT 2019. Part II

  • ISBN

    978-3-030-30603-8

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Počet stran výsledku

    10

  • Strana od-do

    243-252

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Wroclaw

  • Datum konání akce

    15. 9. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000564742800022