Machine-Learning and R in Plastic Surgery - Evaluation of Facial Attractiveness and Classification of Facial Emotions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F20%3A10414956" target="_blank" >RIV/00216208:11110/20:10414956 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21460/20:00336672
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-30604-5_22" target="_blank" >https://doi.org/10.1007/978-3-030-30604-5_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-30604-5_22" target="_blank" >10.1007/978-3-030-30604-5_22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine-Learning and R in Plastic Surgery - Evaluation of Facial Attractiveness and Classification of Facial Emotions
Popis výsledku v původním jazyce
Although facial attractiveness is data-driven and nondependent on a perceiver, traditional statistical methods cannot properly identify relationships between facial geometry and its visual impression. Similarly, classification of facial images into facial emotions is also challenging, since the classification should consider the fact that overall facial impression is always dependent on currently present facial emotion. To address the problems, both profile and portrait facial images of the patients (n = 42) were preprocessed, landmarked, and analyzed via R language. Multivariate regression was carried out to detect indicators increasing facial attractiveness after going through rhinoplasty. Bayesian naive classifiers, decision trees (CART) and neural networks, respectively, were built to classify a new facial image into one of the facial emotions, defined using Ekman-Friesen FACS scale. Nasolabial and nasofrontal angles' enlargement within rhinoplasty increases facial attractiveness (p<0.05). Decision trees proved the geometry of a mouth, then eyebrows and finally eyes affect in this descending order an impact on classified emotion. Neural networks returned the highest accuracy of the classification. Performed machine-learning analyses pointed out which facial features affect facial attractiveness the most and should be therefore treated by plastics surgery procedures. The classification of facial images into emotions show possible associations between facial geometry and facial emotions.
Název v anglickém jazyce
Machine-Learning and R in Plastic Surgery - Evaluation of Facial Attractiveness and Classification of Facial Emotions
Popis výsledku anglicky
Although facial attractiveness is data-driven and nondependent on a perceiver, traditional statistical methods cannot properly identify relationships between facial geometry and its visual impression. Similarly, classification of facial images into facial emotions is also challenging, since the classification should consider the fact that overall facial impression is always dependent on currently present facial emotion. To address the problems, both profile and portrait facial images of the patients (n = 42) were preprocessed, landmarked, and analyzed via R language. Multivariate regression was carried out to detect indicators increasing facial attractiveness after going through rhinoplasty. Bayesian naive classifiers, decision trees (CART) and neural networks, respectively, were built to classify a new facial image into one of the facial emotions, defined using Ekman-Friesen FACS scale. Nasolabial and nasofrontal angles' enlargement within rhinoplasty increases facial attractiveness (p<0.05). Decision trees proved the geometry of a mouth, then eyebrows and finally eyes affect in this descending order an impact on classified emotion. Neural networks returned the highest accuracy of the classification. Performed machine-learning analyses pointed out which facial features affect facial attractiveness the most and should be therefore treated by plastics surgery procedures. The classification of facial images into emotions show possible associations between facial geometry and facial emotions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30212 - Surgery
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information systems Architecture and Technology: Proceedings of 40th Anniversary International Conference on Information Systems Architecture and Technology - ISAT 2019. Part II
ISBN
978-3-030-30603-8
ISSN
2194-5357
e-ISSN
2194-5365
Počet stran výsledku
10
Strana od-do
243-252
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Wroclaw
Datum konání akce
15. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000564742800022