Machine-learning at the service of plastic surgery: A case study evaluating facial attractiveness and emotions using R language
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F19%3A00336673" target="_blank" >RIV/68407700:21460/19:00336673 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8860002" target="_blank" >https://ieeexplore.ieee.org/document/8860002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15439/2019F264" target="_blank" >10.15439/2019F264</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine-learning at the service of plastic surgery: A case study evaluating facial attractiveness and emotions using R language
Popis výsledku v původním jazyce
Since the plastic surgery should consider that facial impression is always dependent on current facial emotion, it came to be verified how precise classification of facial images into sets of defined facial emotions is.Multivariate regression was performed using R language to identify indicators increasing facial attractiveness after undergoing rhinoplasty. Bayesian naive classifiers, decision trees (CART) and neural networks, respectively, were applied to assign a landmarked facial image data into one of the facial emotions, based on Ekman-Friesen FACS scale.Enlargement of nasolabial and nasofrontal angle within rhinoplasty significantly predicts facial attractiveness increasing (p<; 0.05). Decision trees showed the geometry of a mouth, then eyebrows and finally eyes affect in this descending order an impact on classified emotion. Neural networks proved the highest accuracy of the classification.Performed machine-learning analyses pointed out which geometric facial features increase facial attractiveness the most and should be consequently treated by plastic surgeries.
Název v anglickém jazyce
Machine-learning at the service of plastic surgery: A case study evaluating facial attractiveness and emotions using R language
Popis výsledku anglicky
Since the plastic surgery should consider that facial impression is always dependent on current facial emotion, it came to be verified how precise classification of facial images into sets of defined facial emotions is.Multivariate regression was performed using R language to identify indicators increasing facial attractiveness after undergoing rhinoplasty. Bayesian naive classifiers, decision trees (CART) and neural networks, respectively, were applied to assign a landmarked facial image data into one of the facial emotions, based on Ekman-Friesen FACS scale.Enlargement of nasolabial and nasofrontal angle within rhinoplasty significantly predicts facial attractiveness increasing (p<; 0.05). Decision trees showed the geometry of a mouth, then eyebrows and finally eyes affect in this descending order an impact on classified emotion. Neural networks proved the highest accuracy of the classification.Performed machine-learning analyses pointed out which geometric facial features increase facial attractiveness the most and should be consequently treated by plastic surgeries.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Federated Conference on Computer Science and Information Systems
ISBN
9788395541605
ISSN
—
e-ISSN
2300-5963
Počet stran výsledku
6
Strana od-do
107-112
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
—
Místo konání akce
Leipzig
Datum konání akce
1. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—