Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Nalezeny alternativní kódy
RIV/00064165:_____/21:10428662
Výsledek na webu
https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ppNCkRd09Z
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy
Popis výsledku v původním jazyce
We have developed an artificial neural network prediction model for end-stage kidney disease (ESKD) in patients with primary immunoglobulin A nephropathy (IgAN) using a retrospective cohort of 948 patients with IgAN. Our tool is based on a two-step procedure of a classifier model that predicts ESKD, and a regression model that predicts development of ESKD over time. The classifier model showed a performance value of 0.82 (area under the receiver operating characteristic curve) in patients with a follow-up of five years, which improved to 0.89 at the ten-year follow-up. Both models had a higher recall rate, which indicated the practicality of the tool. The regression model showed a mean absolute error of 1.78 years and a root mean square error of 2.15 years. Testing in an independent cohort of 167patients with IgAN found successful results for 91% of the patients. Comparison of our system with other mathematical models showed the highest discriminant Harrell C index at five- and ten-years follow-up (81% and 86%, respectively), paralleling the lowest Akaike information criterion values (355.01 and 269.56, respectively). Moreover, our system was the best calibrated model indicating that the predicted and observed outcome probabilities did not significantly differ. Finally, the dynamic discrimination indexes of our artificial neural network, expressed as the weighted average of time-dependent areas under the curve calculated at one and two years, were 0.80 and 0.79, respectively. Similar results were observed over a 25-year follow-up period. Thus, our tool identified individuals who were at a high risk of developing ESKD due to IgAN and predicted the time-to-event endpoint. Accurate prediction is an important step toward introduction of a therapeutic strategy for improving clinical outcomes.
Název v anglickém jazyce
Development and testing of an artificial intelligence tool for predicting end-stage kidney disease in patients with immunoglobulin A nephropathy
Popis výsledku anglicky
We have developed an artificial neural network prediction model for end-stage kidney disease (ESKD) in patients with primary immunoglobulin A nephropathy (IgAN) using a retrospective cohort of 948 patients with IgAN. Our tool is based on a two-step procedure of a classifier model that predicts ESKD, and a regression model that predicts development of ESKD over time. The classifier model showed a performance value of 0.82 (area under the receiver operating characteristic curve) in patients with a follow-up of five years, which improved to 0.89 at the ten-year follow-up. Both models had a higher recall rate, which indicated the practicality of the tool. The regression model showed a mean absolute error of 1.78 years and a root mean square error of 2.15 years. Testing in an independent cohort of 167patients with IgAN found successful results for 91% of the patients. Comparison of our system with other mathematical models showed the highest discriminant Harrell C index at five- and ten-years follow-up (81% and 86%, respectively), paralleling the lowest Akaike information criterion values (355.01 and 269.56, respectively). Moreover, our system was the best calibrated model indicating that the predicted and observed outcome probabilities did not significantly differ. Finally, the dynamic discrimination indexes of our artificial neural network, expressed as the weighted average of time-dependent areas under the curve calculated at one and two years, were 0.80 and 0.79, respectively. Similar results were observed over a 25-year follow-up period. Thus, our tool identified individuals who were at a high risk of developing ESKD due to IgAN and predicted the time-to-event endpoint. Accurate prediction is an important step toward introduction of a therapeutic strategy for improving clinical outcomes.
Klasifikace
Druh
Jimp - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30217 - Urology and nephrology
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kidney International
ISSN
0085-2538
e-ISSN
—
Svazek periodika
99
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1179-1188
Kód UT WoS článku
000642289000013
EID výsledku v databázi Scopus
2-s2.0-85102147209
Základní informace
Druh výsledku
Jimp - Článek v periodiku v databázi Web of Science
OECD FORD
Urology and nephrology
Rok uplatnění
2021