Accounting for EGFR Mutations in Epidemiologic Analyses of Non-Small Cell Lung Cancers: Examples Based on the International Lung Cancer Consortium Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F22%3A10442797" target="_blank" >RIV/00216208:11110/22:10442797 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XEqWmigy4x" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XEqWmigy4x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1158/1055-9965.EPI-21-0747" target="_blank" >10.1158/1055-9965.EPI-21-0747</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accounting for EGFR Mutations in Epidemiologic Analyses of Non-Small Cell Lung Cancers: Examples Based on the International Lung Cancer Consortium Data
Popis výsledku v původním jazyce
Background: Somatic EGFR mutations define a subset of non-small cell lung cancers (NSCLC) that have dinical impact on NSCLC risk and outcome. However, EGFR-mutation-status is often missing in epidemiologic datasets. We developed and tested pragmatic approaches to account for EGFR-mutation-status based on variables commonly included in epidemiologic datasets and evaluated the clinical utility of these approaches. Methods: Through analysis of the International Lung Cancer Consortium (ILCCO) epidemiologic datasets, we developed a regression model for EGFR-status; we then applied a clinical-restriction approach using the optimal cut-point, and a second epidemiologic, multiple imputation approach to ILCCO survival analyses that did and did not account for EGFR-status. Results: Of 35,356 ILCCO patients with NSCLC, EGFR-mutation-status was available in 4,231 patients. A model regressing known EGFR-mutation-status on clinical and demographic variables achieved a concordance index of 0.75 (95% CI, 0.74-0.77) in the training and 0.77 (95% CI, 0.74-0.79) in the testing dataset At an optimal cut-point of probability-score - 0335, sensitivity - 69% and specificity = 72.5% for determining EGFR-wildtype status. In both restriction-based and imputation-based regression analyses of the individual roles of BMI on overall survival of patients with NSCLC, similar results were observed between overall and EGFR-mutation-negative cohort analyses of patients of all ancestries. However, our approach identified some differences: EGFR-mutated Asian patients did not incur a survival benefit from being obese, as observed in EGFR-wildtype Asian patients. Conclusions: We introduce a pragmatic method to evaluate the potential impact of EGFR-status on epidemiological analyses of NSCLC. Impact: The proposed method is generalizable in the common occurrence in which EGFR-status data are missing.
Název v anglickém jazyce
Accounting for EGFR Mutations in Epidemiologic Analyses of Non-Small Cell Lung Cancers: Examples Based on the International Lung Cancer Consortium Data
Popis výsledku anglicky
Background: Somatic EGFR mutations define a subset of non-small cell lung cancers (NSCLC) that have dinical impact on NSCLC risk and outcome. However, EGFR-mutation-status is often missing in epidemiologic datasets. We developed and tested pragmatic approaches to account for EGFR-mutation-status based on variables commonly included in epidemiologic datasets and evaluated the clinical utility of these approaches. Methods: Through analysis of the International Lung Cancer Consortium (ILCCO) epidemiologic datasets, we developed a regression model for EGFR-status; we then applied a clinical-restriction approach using the optimal cut-point, and a second epidemiologic, multiple imputation approach to ILCCO survival analyses that did and did not account for EGFR-status. Results: Of 35,356 ILCCO patients with NSCLC, EGFR-mutation-status was available in 4,231 patients. A model regressing known EGFR-mutation-status on clinical and demographic variables achieved a concordance index of 0.75 (95% CI, 0.74-0.77) in the training and 0.77 (95% CI, 0.74-0.79) in the testing dataset At an optimal cut-point of probability-score - 0335, sensitivity - 69% and specificity = 72.5% for determining EGFR-wildtype status. In both restriction-based and imputation-based regression analyses of the individual roles of BMI on overall survival of patients with NSCLC, similar results were observed between overall and EGFR-mutation-negative cohort analyses of patients of all ancestries. However, our approach identified some differences: EGFR-mutated Asian patients did not incur a survival benefit from being obese, as observed in EGFR-wildtype Asian patients. Conclusions: We introduce a pragmatic method to evaluate the potential impact of EGFR-status on epidemiological analyses of NSCLC. Impact: The proposed method is generalizable in the common occurrence in which EGFR-status data are missing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30304 - Public and environmental health
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cancer Epidemiology, Biomarkers & Prevention
ISSN
1055-9965
e-ISSN
1538-7755
Svazek periodika
31
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
679-687
Kód UT WoS článku
000767311700001
EID výsledku v databázi Scopus
2-s2.0-85125846211