Magnetic particle spectroscopy and magnetic particle imaging of zinc and cobalt ferrite nanoparticles: Distinct relaxation mechanisms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F24%3A10476186" target="_blank" >RIV/00216208:11110/24:10476186 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/24:00598431 RIV/00216208:11320/24:10476186
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-kHOH-TIX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-kHOH-TIX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jallcom.2023.173022" target="_blank" >10.1016/j.jallcom.2023.173022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Magnetic particle spectroscopy and magnetic particle imaging of zinc and cobalt ferrite nanoparticles: Distinct relaxation mechanisms
Popis výsledku v původním jazyce
Magnetic particle imaging (MPI) is an emerging imaging method based on the nonlinear response of superparamagnetic tracers to a sinusoidal AC magnetic field. Higher harmonics obtained by the Fourier transform of acquired signals form a so-called magnetic particle spectrum, whereby straightforward evaluation of different nanoparticles as potential MPI tracers can be carried out. The shape of the spectra is largely dictated by the combined Néel and Brownian relaxation of superspins, whose relative contributions vary significantly depending on the tracer properties. The present study is focused on the comparison of several Zn ferrite and Co ferrite samples, selected for their different magnetic behaviors, together with the commercial tracer Resovist(R) (SH U 555 A). A new custom-made magnetic particle spectrometer and a commercial MPI system (Bruker) with comparable AC field amplitudes (TILDE OPERATOR+D9114 mT) and frequencies (TILDE OPERATOR+D9125 kHz) are used. Magnetic nanoparticles of Zn and Co ferrites have been synthesized by the thermal decomposition method and by the solvothermal/hydrothermal route, achieving four different samples of magnetic cores with the mean crystallite size in the range of 8-16 nm. From all of them, well-comparable silica-coated particles with a shell thickness of 5-6 nm have been prepared. To analyse the effect of the coating layer and hydrodynamic size, three additional samples have been supplemented: solvothermal Zn ferrite nanoparticles stabilized with a citrate monolayer, the same particles coated with 17 nm thick silica shell, and silica-coated Zn ferrite particles from the thermal decomposition with a higher degree of agglomeration. Fundamental characterizations of the nanomaterials by XRD, XRF, TEM, and DLS are followed by detailed investigations of their magnetic properties and structural peculiarities by SQUID magnetometry and 57Fe Mössbauer spectroscopy. Magnetic particle spectroscopy and subsequent MPI study demonstrate: (i) superior properties of Zn ferrite nanoparticles compared to their Co ferrite counterparts, (ii) only negligible to weak effect of the type/thickness of the coating on signal of Zn ferrite nanoparticles, (iii) comparable performance of the solvothermal Zn ferrite particles with a thin silica shell and of the Resovist(R) tracer, and importantly, (iv) that suitable choice of the magnetic phase enables to separate the contributions of the Néel and Brownian relaxation on the timescale of MPI.
Název v anglickém jazyce
Magnetic particle spectroscopy and magnetic particle imaging of zinc and cobalt ferrite nanoparticles: Distinct relaxation mechanisms
Popis výsledku anglicky
Magnetic particle imaging (MPI) is an emerging imaging method based on the nonlinear response of superparamagnetic tracers to a sinusoidal AC magnetic field. Higher harmonics obtained by the Fourier transform of acquired signals form a so-called magnetic particle spectrum, whereby straightforward evaluation of different nanoparticles as potential MPI tracers can be carried out. The shape of the spectra is largely dictated by the combined Néel and Brownian relaxation of superspins, whose relative contributions vary significantly depending on the tracer properties. The present study is focused on the comparison of several Zn ferrite and Co ferrite samples, selected for their different magnetic behaviors, together with the commercial tracer Resovist(R) (SH U 555 A). A new custom-made magnetic particle spectrometer and a commercial MPI system (Bruker) with comparable AC field amplitudes (TILDE OPERATOR+D9114 mT) and frequencies (TILDE OPERATOR+D9125 kHz) are used. Magnetic nanoparticles of Zn and Co ferrites have been synthesized by the thermal decomposition method and by the solvothermal/hydrothermal route, achieving four different samples of magnetic cores with the mean crystallite size in the range of 8-16 nm. From all of them, well-comparable silica-coated particles with a shell thickness of 5-6 nm have been prepared. To analyse the effect of the coating layer and hydrodynamic size, three additional samples have been supplemented: solvothermal Zn ferrite nanoparticles stabilized with a citrate monolayer, the same particles coated with 17 nm thick silica shell, and silica-coated Zn ferrite particles from the thermal decomposition with a higher degree of agglomeration. Fundamental characterizations of the nanomaterials by XRD, XRF, TEM, and DLS are followed by detailed investigations of their magnetic properties and structural peculiarities by SQUID magnetometry and 57Fe Mössbauer spectroscopy. Magnetic particle spectroscopy and subsequent MPI study demonstrate: (i) superior properties of Zn ferrite nanoparticles compared to their Co ferrite counterparts, (ii) only negligible to weak effect of the type/thickness of the coating on signal of Zn ferrite nanoparticles, (iii) comparable performance of the solvothermal Zn ferrite particles with a thin silica shell and of the Resovist(R) tracer, and importantly, (iv) that suitable choice of the magnetic phase enables to separate the contributions of the Néel and Brownian relaxation on the timescale of MPI.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Alloys and Compounds
ISSN
0925-8388
e-ISSN
1873-4669
Svazek periodika
978
Číslo periodika v rámci svazku
1 December 2023
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
173022
Kód UT WoS článku
001163021200001
EID výsledku v databázi Scopus
2-s2.0-85182391401