Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Magnetic particle spectroscopy and magnetic particle imaging of zinc and cobalt ferrite nanoparticles: Distinct relaxation mechanisms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F24%3A10476186" target="_blank" >RIV/00216208:11110/24:10476186 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378271:_____/24:00598431 RIV/00216208:11320/24:10476186

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-kHOH-TIX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=-kHOH-TIX</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jallcom.2023.173022" target="_blank" >10.1016/j.jallcom.2023.173022</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Magnetic particle spectroscopy and magnetic particle imaging of zinc and cobalt ferrite nanoparticles: Distinct relaxation mechanisms

  • Popis výsledku v původním jazyce

    Magnetic particle imaging (MPI) is an emerging imaging method based on the nonlinear response of superparamagnetic tracers to a sinusoidal AC magnetic field. Higher harmonics obtained by the Fourier transform of acquired signals form a so-called magnetic particle spectrum, whereby straightforward evaluation of different nanoparticles as potential MPI tracers can be carried out. The shape of the spectra is largely dictated by the combined Néel and Brownian relaxation of superspins, whose relative contributions vary significantly depending on the tracer properties. The present study is focused on the comparison of several Zn ferrite and Co ferrite samples, selected for their different magnetic behaviors, together with the commercial tracer Resovist(R) (SH U 555 A). A new custom-made magnetic particle spectrometer and a commercial MPI system (Bruker) with comparable AC field amplitudes (TILDE OPERATOR+D9114 mT) and frequencies (TILDE OPERATOR+D9125 kHz) are used. Magnetic nanoparticles of Zn and Co ferrites have been synthesized by the thermal decomposition method and by the solvothermal/hydrothermal route, achieving four different samples of magnetic cores with the mean crystallite size in the range of 8-16 nm. From all of them, well-comparable silica-coated particles with a shell thickness of 5-6 nm have been prepared. To analyse the effect of the coating layer and hydrodynamic size, three additional samples have been supplemented: solvothermal Zn ferrite nanoparticles stabilized with a citrate monolayer, the same particles coated with 17 nm thick silica shell, and silica-coated Zn ferrite particles from the thermal decomposition with a higher degree of agglomeration. Fundamental characterizations of the nanomaterials by XRD, XRF, TEM, and DLS are followed by detailed investigations of their magnetic properties and structural peculiarities by SQUID magnetometry and 57Fe Mössbauer spectroscopy. Magnetic particle spectroscopy and subsequent MPI study demonstrate: (i) superior properties of Zn ferrite nanoparticles compared to their Co ferrite counterparts, (ii) only negligible to weak effect of the type/thickness of the coating on signal of Zn ferrite nanoparticles, (iii) comparable performance of the solvothermal Zn ferrite particles with a thin silica shell and of the Resovist(R) tracer, and importantly, (iv) that suitable choice of the magnetic phase enables to separate the contributions of the Néel and Brownian relaxation on the timescale of MPI.

  • Název v anglickém jazyce

    Magnetic particle spectroscopy and magnetic particle imaging of zinc and cobalt ferrite nanoparticles: Distinct relaxation mechanisms

  • Popis výsledku anglicky

    Magnetic particle imaging (MPI) is an emerging imaging method based on the nonlinear response of superparamagnetic tracers to a sinusoidal AC magnetic field. Higher harmonics obtained by the Fourier transform of acquired signals form a so-called magnetic particle spectrum, whereby straightforward evaluation of different nanoparticles as potential MPI tracers can be carried out. The shape of the spectra is largely dictated by the combined Néel and Brownian relaxation of superspins, whose relative contributions vary significantly depending on the tracer properties. The present study is focused on the comparison of several Zn ferrite and Co ferrite samples, selected for their different magnetic behaviors, together with the commercial tracer Resovist(R) (SH U 555 A). A new custom-made magnetic particle spectrometer and a commercial MPI system (Bruker) with comparable AC field amplitudes (TILDE OPERATOR+D9114 mT) and frequencies (TILDE OPERATOR+D9125 kHz) are used. Magnetic nanoparticles of Zn and Co ferrites have been synthesized by the thermal decomposition method and by the solvothermal/hydrothermal route, achieving four different samples of magnetic cores with the mean crystallite size in the range of 8-16 nm. From all of them, well-comparable silica-coated particles with a shell thickness of 5-6 nm have been prepared. To analyse the effect of the coating layer and hydrodynamic size, three additional samples have been supplemented: solvothermal Zn ferrite nanoparticles stabilized with a citrate monolayer, the same particles coated with 17 nm thick silica shell, and silica-coated Zn ferrite particles from the thermal decomposition with a higher degree of agglomeration. Fundamental characterizations of the nanomaterials by XRD, XRF, TEM, and DLS are followed by detailed investigations of their magnetic properties and structural peculiarities by SQUID magnetometry and 57Fe Mössbauer spectroscopy. Magnetic particle spectroscopy and subsequent MPI study demonstrate: (i) superior properties of Zn ferrite nanoparticles compared to their Co ferrite counterparts, (ii) only negligible to weak effect of the type/thickness of the coating on signal of Zn ferrite nanoparticles, (iii) comparable performance of the solvothermal Zn ferrite particles with a thin silica shell and of the Resovist(R) tracer, and importantly, (iv) that suitable choice of the magnetic phase enables to separate the contributions of the Néel and Brownian relaxation on the timescale of MPI.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Alloys and Compounds

  • ISSN

    0925-8388

  • e-ISSN

    1873-4669

  • Svazek periodika

    978

  • Číslo periodika v rámci svazku

    1 December 2023

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    15

  • Strana od-do

    173022

  • Kód UT WoS článku

    001163021200001

  • EID výsledku v databázi Scopus

    2-s2.0-85182391401