Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evidence-based tailoring of bioinformatics approaches to optimize methods that predict the effects of nonsynonymous amino acid substitutions in glucokinase

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11120%2F17%3A43915164" target="_blank" >RIV/00216208:11120/17:43915164 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1038/s41598-017-09810-0" target="_blank" >http://dx.doi.org/10.1038/s41598-017-09810-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-017-09810-0" target="_blank" >10.1038/s41598-017-09810-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evidence-based tailoring of bioinformatics approaches to optimize methods that predict the effects of nonsynonymous amino acid substitutions in glucokinase

  • Popis výsledku v původním jazyce

    Computational methods that allow predicting the effects of nonsynonymous substitutions are an integral part of exome studies. Here, we validated and improved their specificity by performing a comprehensive bioinformatics analysis combined with experimental and clinical data on a model of glucokinase (GCK): 8835 putative variations, including 515 disease-associated variations from 1596 families with diagnoses of monogenic diabetes (GCK-MODY) or persistent hyperinsulinemic hypoglycemia of infancy (PHHI), and 126 variations with available or newly reported (19 variations) data on enzyme kinetics. We also proved that high frequency of disease-associated variations found in patients is closely related to their evolutionary conservation. The default set prediction methods predicted correctly the effects of only a part of the GCK-MODY-associated variations and completely failed to predict the normoglycemic or PHHI-associated variations. Therefore, we calculated evidence-based thresholds that improved significantly the specificity of predictions (&lt;=75%). The combined prediction analysis even allowed to distinguish activating from inactivating variations and identified a group of putatively highly pathogenic variations (EVmutation score &lt;-7.5 and SNAP2 score &gt;70), which were surprisingly underrepresented among MODY patients and thus under negative selection during molecular evolution. We suggested and validated the first robust evidence-based thresholds, which allow improved, highly specific predictions of disease-associated GCK variations.

  • Název v anglickém jazyce

    Evidence-based tailoring of bioinformatics approaches to optimize methods that predict the effects of nonsynonymous amino acid substitutions in glucokinase

  • Popis výsledku anglicky

    Computational methods that allow predicting the effects of nonsynonymous substitutions are an integral part of exome studies. Here, we validated and improved their specificity by performing a comprehensive bioinformatics analysis combined with experimental and clinical data on a model of glucokinase (GCK): 8835 putative variations, including 515 disease-associated variations from 1596 families with diagnoses of monogenic diabetes (GCK-MODY) or persistent hyperinsulinemic hypoglycemia of infancy (PHHI), and 126 variations with available or newly reported (19 variations) data on enzyme kinetics. We also proved that high frequency of disease-associated variations found in patients is closely related to their evolutionary conservation. The default set prediction methods predicted correctly the effects of only a part of the GCK-MODY-associated variations and completely failed to predict the normoglycemic or PHHI-associated variations. Therefore, we calculated evidence-based thresholds that improved significantly the specificity of predictions (&lt;=75%). The combined prediction analysis even allowed to distinguish activating from inactivating variations and identified a group of putatively highly pathogenic variations (EVmutation score &lt;-7.5 and SNAP2 score &gt;70), which were surprisingly underrepresented among MODY patients and thus under negative selection during molecular evolution. We suggested and validated the first robust evidence-based thresholds, which allow improved, highly specific predictions of disease-associated GCK variations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30202 - Endocrinology and metabolism (including diabetes, hormones)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ15-03834Y" target="_blank" >GJ15-03834Y: Mechanismy vzniku, progrese a terapie monogenních typů diabetu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    "Article 9499"

  • Kód UT WoS článku

    000408448600036

  • EID výsledku v databázi Scopus

    2-s2.0-85028352831