Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11120%2F19%3A43919410" target="_blank" >RIV/00216208:11120/19:43919410 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1038/s41598-019-54976-4" target="_blank" >https://doi.org/10.1038/s41598-019-54976-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-019-54976-4" target="_blank" >10.1038/s41598-019-54976-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases
Popis výsledku v původním jazyce
Prediction methods have become an integral part of biomedical and biotechnological research. However, their clinical interpretations are largely based on biochemical or molecular data, but not clinical data. Here, we focus on improving the reliability and clinical applicability of prediction algorithms. We assembled and curated two large non-overlapping large databases of clinical phenotypes. These phenotypes were caused by missense variations in 44 and 63 genes associated with Mendelian diseases. We used these databases to establish and validate the model, allowing us to improve the predictions obtained from EVmutation, SNAP2 and PoPMuSiC 2.1. The predictions of clinical effects suffered from a lack of specificity, which appears to be the common constraint of all recently used prediction methods, although predictions mediated by these methods are associated with nearly absolute sensitivity. We introduced evidence-based tailoring of the default settings of the prediction methods; this tailoring substantially improved the prediction outcomes. Additionally, the comparisons of the clinically observed and theoretical variations led to the identification of large previously unreported pools of variations that were under negative selection during molecular evolution. The evolutionary variation analysis approach described here is the first to enable the highly specific identification of likely disease-causing missense variations that have not yet been associated with any clinical phenotype.
Název v anglickém jazyce
Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases
Popis výsledku anglicky
Prediction methods have become an integral part of biomedical and biotechnological research. However, their clinical interpretations are largely based on biochemical or molecular data, but not clinical data. Here, we focus on improving the reliability and clinical applicability of prediction algorithms. We assembled and curated two large non-overlapping large databases of clinical phenotypes. These phenotypes were caused by missense variations in 44 and 63 genes associated with Mendelian diseases. We used these databases to establish and validate the model, allowing us to improve the predictions obtained from EVmutation, SNAP2 and PoPMuSiC 2.1. The predictions of clinical effects suffered from a lack of specificity, which appears to be the common constraint of all recently used prediction methods, although predictions mediated by these methods are associated with nearly absolute sensitivity. We introduced evidence-based tailoring of the default settings of the prediction methods; this tailoring substantially improved the prediction outcomes. Additionally, the comparisons of the clinically observed and theoretical variations led to the identification of large previously unreported pools of variations that were under negative selection during molecular evolution. The evolutionary variation analysis approach described here is the first to enable the highly specific identification of likely disease-causing missense variations that have not yet been associated with any clinical phenotype.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30202 - Endocrinology and metabolism (including diabetes, hormones)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ15-03834Y" target="_blank" >GJ15-03834Y: Mechanismy vzniku, progrese a terapie monogenních typů diabetu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
"Article 18577"
Kód UT WoS článku
000501751300001
EID výsledku v databázi Scopus
2-s2.0-85076356246