Can QRS morphology be used to differentiate between true septal vs. apparently septal lead placement? An analysis of ECG of real mid-septal, apparent mid-septal, and apical pacing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11120%2F20%3A43920314" target="_blank" >RIV/00216208:11120/20:43920314 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00064173:_____/20:N0000083
Výsledek na webu
<a href="https://doi.org/10.1093/eurheartj/suaa094" target="_blank" >https://doi.org/10.1093/eurheartj/suaa094</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/eurheartj/suaa094" target="_blank" >10.1093/eurheartj/suaa094</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Can QRS morphology be used to differentiate between true septal vs. apparently septal lead placement? An analysis of ECG of real mid-septal, apparent mid-septal, and apical pacing
Popis výsledku v původním jazyce
The location of the pacemaker lead is based on the shape of the lead on fluoroscopy only, typically in the left and right anterior oblique positions. However, these fluoroscopy criteria are insufficient and many leads apparently considered to be in septum are in fact anchored in anterior wall. Periprocedural ECG could determine the correct lead location. The aim of the current analysis is to characterize ECG criteria associated with a correct position of the right ventricular (RV) lead in the mid-septum. Patients with indications for a pacemaker had the RV lead implanted in the apex (Group A) or mid-septum using the standard fluoroscopic criteria. The exact position of the RV lead was verified using computed tomography. Based on the findings, the mid-septal group was divided into two subgroups: (i) true septum, i.e. lead was found in the mid-septum, and (ii) false septum, i.e. lead was in the adjacent areas (anterior wall, anteroseptal groove). Paced ECGs were acquired from all patients and multiple criteria were analysed. Paced ECGs from 106 patients were analysed (27 in A, 36 in true septum, and 43 in false septum group). Group A had a significantly wider QRS, more left-deviated axis and later transition zone compared with the true septum and false septum groups. There were no differences in presence of q in lead I, or notching in inferior or lateral leads between the three groups. QRS patterns of true septum and false septum groups were similar with only one exception of the transition zone. In the multivariate model, the only ECG parameters associated with correct lead placement in the septum was an earlier transition zone (odds ratio (OR) 2.53, = 0.001). ECGs can be easily used to differentiate apical pacing from septal or septum-close pacing. The only ECG characteristic that could help to identify true septum lead position was the transition zone in the precordial leads. ClinicalTrials.gov identifier: NCT02412176.
Název v anglickém jazyce
Can QRS morphology be used to differentiate between true septal vs. apparently septal lead placement? An analysis of ECG of real mid-septal, apparent mid-septal, and apical pacing
Popis výsledku anglicky
The location of the pacemaker lead is based on the shape of the lead on fluoroscopy only, typically in the left and right anterior oblique positions. However, these fluoroscopy criteria are insufficient and many leads apparently considered to be in septum are in fact anchored in anterior wall. Periprocedural ECG could determine the correct lead location. The aim of the current analysis is to characterize ECG criteria associated with a correct position of the right ventricular (RV) lead in the mid-septum. Patients with indications for a pacemaker had the RV lead implanted in the apex (Group A) or mid-septum using the standard fluoroscopic criteria. The exact position of the RV lead was verified using computed tomography. Based on the findings, the mid-septal group was divided into two subgroups: (i) true septum, i.e. lead was found in the mid-septum, and (ii) false septum, i.e. lead was in the adjacent areas (anterior wall, anteroseptal groove). Paced ECGs were acquired from all patients and multiple criteria were analysed. Paced ECGs from 106 patients were analysed (27 in A, 36 in true septum, and 43 in false septum group). Group A had a significantly wider QRS, more left-deviated axis and later transition zone compared with the true septum and false septum groups. There were no differences in presence of q in lead I, or notching in inferior or lateral leads between the three groups. QRS patterns of true septum and false septum groups were similar with only one exception of the transition zone. In the multivariate model, the only ECG parameters associated with correct lead placement in the septum was an earlier transition zone (odds ratio (OR) 2.53, = 0.001). ECGs can be easily used to differentiate apical pacing from septal or septum-close pacing. The only ECG characteristic that could help to identify true septum lead position was the transition zone in the precordial leads. ClinicalTrials.gov identifier: NCT02412176.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30201 - Cardiac and Cardiovascular systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Heart Journal: Supplements
ISSN
1520-765X
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
Suppl. F
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
"F14"-"F22"
Kód UT WoS článku
000577169200003
EID výsledku v databázi Scopus
2-s2.0-85101305286