Synthesis for Dataset Augmentation of H&E Stained Images with Semantic Segmentation Masks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11120%2F23%3A43927134" target="_blank" >RIV/00216208:11120/23:43927134 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0011679300003417" target="_blank" >https://doi.org/10.5220/0011679300003417</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0011679300003417" target="_blank" >10.5220/0011679300003417</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synthesis for Dataset Augmentation of H&E Stained Images with Semantic Segmentation Masks
Popis výsledku v původním jazyce
The automatic analysis of medical images with the application of deep learning methods relies highly on the amount and quality of annotated data. Most of the diagnostic processes start with the segmentation and classification of cells. The manual annotation of a sufficient amount of high-variability data is extremely time-consuming, and the semi-automatic methods may introduce an error bias. Another research option is to use deep learning generative models to synthesize medical data with annotations as an extension to real datasets. Enhancing the training with synthetic data proved that it can improve the robustness and generalization of the models used in industrial problems. This paper presents a deep learning-based approach to generate synthetic histological stained images with corresponding multi-class annotated masks evaluated on cell semantic segmentation. We train conditional generative adversarial networks to synthesize a 6-channeled image. The six channels consist of the histological image and the annotations concerning the cell and organ type specified in the input. We evaluated the impact of the synthetic data on the training with the standard network UNet. We observe quantitative and qualitative changes in segmentation results from models trained on different distributions of real and synthetic data in the training batch.
Název v anglickém jazyce
Synthesis for Dataset Augmentation of H&E Stained Images with Semantic Segmentation Masks
Popis výsledku anglicky
The automatic analysis of medical images with the application of deep learning methods relies highly on the amount and quality of annotated data. Most of the diagnostic processes start with the segmentation and classification of cells. The manual annotation of a sufficient amount of high-variability data is extremely time-consuming, and the semi-automatic methods may introduce an error bias. Another research option is to use deep learning generative models to synthesize medical data with annotations as an extension to real datasets. Enhancing the training with synthetic data proved that it can improve the robustness and generalization of the models used in industrial problems. This paper presents a deep learning-based approach to generate synthetic histological stained images with corresponding multi-class annotated masks evaluated on cell semantic segmentation. We train conditional generative adversarial networks to synthesize a 6-channeled image. The six channels consist of the histological image and the annotations concerning the cell and organ type specified in the input. We evaluated the impact of the synthetic data on the training with the standard network UNet. We observe quantitative and qualitative changes in segmentation results from models trained on different distributions of real and synthetic data in the training batch.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30224 - Radiology, nuclear medicine and medical imaging
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP - Volume 4
ISBN
978-989-758-634-7
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
873-880
Název nakladatele
SciTePress
Místo vydání
Setúbal
Místo konání akce
Lisabon
Datum konání akce
19. 2. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—