Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Artificial Image Synthesis and Data Augmentation for Deep Learning Segmentation of Phase Contrast Images for Biomarker Discovery in Cancer Research

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU137084" target="_blank" >RIV/00216305:26220/19:PU137084 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.researchgate.net/publication/335363685_Artificial_Image_Synthesis_and_Data_Augmentation_for_Deep_Learning_Segmentation_of_Phase_Contrast_Images_for_Biomarker_Discovery_in_Cancer_Research" target="_blank" >https://www.researchgate.net/publication/335363685_Artificial_Image_Synthesis_and_Data_Augmentation_for_Deep_Learning_Segmentation_of_Phase_Contrast_Images_for_Biomarker_Discovery_in_Cancer_Research</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Artificial Image Synthesis and Data Augmentation for Deep Learning Segmentation of Phase Contrast Images for Biomarker Discovery in Cancer Research

  • Popis výsledku v původním jazyce

    Deep learning (DL) algorithms are achieving or even surpassing human-level performance in tasks like image classification or segmentation. Due to their fast development and exceptional performance, DL algorithms were introduced in various life science domains such as biomedical imaging, bioinformatics or computational biology. However, the outcome of these algorithms on unseen data highly depends on the quality of the training dataset. Thus, there is a need for manual data annotation which is a lengthy and time-consuming process, especially in the field of cell imaging. We hereby propose a technique to accelerate data annotation by using synthetic phasecontrast images to train deep learning algorithms for cell segmentation. Uniformity of the statistical data distribution, specific image artefacts modelling or representability were defined, and the method was designed and implemented. The feasibility of the proposed method was demonstrated by training the Mask R-CNN model for instanceaware segmentation

  • Název v anglickém jazyce

    Artificial Image Synthesis and Data Augmentation for Deep Learning Segmentation of Phase Contrast Images for Biomarker Discovery in Cancer Research

  • Popis výsledku anglicky

    Deep learning (DL) algorithms are achieving or even surpassing human-level performance in tasks like image classification or segmentation. Due to their fast development and exceptional performance, DL algorithms were introduced in various life science domains such as biomedical imaging, bioinformatics or computational biology. However, the outcome of these algorithms on unseen data highly depends on the quality of the training dataset. Thus, there is a need for manual data annotation which is a lengthy and time-consuming process, especially in the field of cell imaging. We hereby propose a technique to accelerate data annotation by using synthetic phasecontrast images to train deep learning algorithms for cell segmentation. Uniformity of the statistical data distribution, specific image artefacts modelling or representability were defined, and the method was designed and implemented. The feasibility of the proposed method was demonstrated by training the Mask R-CNN model for instanceaware segmentation

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů