Augmentation Technique for Artificial Phase-Contrast Microscopy Image Synthesis for the Training of Deep Learning Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU137321" target="_blank" >RIV/00216305:26220/19:PU137321 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/335365184_Augmentation_Technique_for_Artificial_Phase-Contrast_Microscopy_Image_Synthesis_for_the_Training_of_Deep_Learning_Algorithms" target="_blank" >https://www.researchgate.net/publication/335365184_Augmentation_Technique_for_Artificial_Phase-Contrast_Microscopy_Image_Synthesis_for_the_Training_of_Deep_Learning_Algorithms</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Augmentation Technique for Artificial Phase-Contrast Microscopy Image Synthesis for the Training of Deep Learning Algorithms
Popis výsledku v původním jazyce
Phase contrast image segmentation is crucial for various biological tasks such as quantitative or comparative analysis at single cell level. Deep learning-based image segmentation has been transferred into the field of microscopy imaging. A large amount of precisely annotated cells is required. Thus, the annotation process is for the experts lengthy and time-consuming. This paper introduces a strategy and augmentation technique for artificial phase-contrast images synthesis aiming to train and support the generalisation ability of deep learning algorithms.
Název v anglickém jazyce
Augmentation Technique for Artificial Phase-Contrast Microscopy Image Synthesis for the Training of Deep Learning Algorithms
Popis výsledku anglicky
Phase contrast image segmentation is crucial for various biological tasks such as quantitative or comparative analysis at single cell level. Deep learning-based image segmentation has been transferred into the field of microscopy imaging. A large amount of precisely annotated cells is required. Thus, the annotation process is for the experts lengthy and time-consuming. This paper introduces a strategy and augmentation technique for artificial phase-contrast images synthesis aiming to train and support the generalisation ability of deep learning algorithms.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů