Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Augmentation Technique for Artificial Phase-Contrast Microscopy Image Synthesis for the Training of Deep Learning Algorithms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU137321" target="_blank" >RIV/00216305:26220/19:PU137321 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.researchgate.net/publication/335365184_Augmentation_Technique_for_Artificial_Phase-Contrast_Microscopy_Image_Synthesis_for_the_Training_of_Deep_Learning_Algorithms" target="_blank" >https://www.researchgate.net/publication/335365184_Augmentation_Technique_for_Artificial_Phase-Contrast_Microscopy_Image_Synthesis_for_the_Training_of_Deep_Learning_Algorithms</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Augmentation Technique for Artificial Phase-Contrast Microscopy Image Synthesis for the Training of Deep Learning Algorithms

  • Popis výsledku v původním jazyce

    Phase contrast image segmentation is crucial for various biological tasks such as quantitative or comparative analysis at single cell level. Deep learning-based image segmentation has been transferred into the field of microscopy imaging. A large amount of precisely annotated cells is required. Thus, the annotation process is for the experts lengthy and time-consuming. This paper introduces a strategy and augmentation technique for artificial phase-contrast images synthesis aiming to train and support the generalisation ability of deep learning algorithms.

  • Název v anglickém jazyce

    Augmentation Technique for Artificial Phase-Contrast Microscopy Image Synthesis for the Training of Deep Learning Algorithms

  • Popis výsledku anglicky

    Phase contrast image segmentation is crucial for various biological tasks such as quantitative or comparative analysis at single cell level. Deep learning-based image segmentation has been transferred into the field of microscopy imaging. A large amount of precisely annotated cells is required. Thus, the annotation process is for the experts lengthy and time-consuming. This paper introduces a strategy and augmentation technique for artificial phase-contrast images synthesis aiming to train and support the generalisation ability of deep learning algorithms.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů