Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F15%3A10316264" target="_blank" >RIV/00216208:11130/15:10316264 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00064203:_____/15:10316264
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ajhg.2015.09.001" target="_blank" >http://dx.doi.org/10.1016/j.ajhg.2015.09.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ajhg.2015.09.001" target="_blank" >10.1016/j.ajhg.2015.09.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores
Popis výsledku v původním jazyce
Polygenic risk scores have shown great promise in predicting complex disease risk and will become more accurate as training sample sizes increase. The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruningand applying a p value threshold to association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LDinformation from an external reference panel. Theory and simulations show that LDpred outperforms the approach of pruning followed by thresholding, particularly at large sample sizes. Accordingly, predicted R-2 increased from 20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0% in a large multiple sclerosis dataset. A similar relative improvement in accuracy was observed for three additional large disease datasets and for non-European schizophrenia samples. The advanta
Název v anglickém jazyce
Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores
Popis výsledku anglicky
Polygenic risk scores have shown great promise in predicting complex disease risk and will become more accurate as training sample sizes increase. The standard approach for calculating risk scores involves linkage disequilibrium (LD)-based marker pruningand applying a p value threshold to association statistics, but this discards information and can reduce predictive accuracy. We introduce LDpred, a method that infers the posterior mean effect size of each marker by using a prior on effect sizes and LDinformation from an external reference panel. Theory and simulations show that LDpred outperforms the approach of pruning followed by thresholding, particularly at large sample sizes. Accordingly, predicted R-2 increased from 20.1% to 25.3% in a large schizophrenia dataset and from 9.8% to 12.0% in a large multiple sclerosis dataset. A similar relative improvement in accuracy was observed for three additional large disease datasets and for non-European schizophrenia samples. The advanta
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EB - Genetika a molekulární biologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
American Journal of Human Genetics
ISSN
0002-9297
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
576-592
Kód UT WoS článku
000362617300008
EID výsledku v databázi Scopus
2-s2.0-84952665106