Respiratory sounds as a source of information in asthma diagnosis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F17%3A10364866" target="_blank" >RIV/00216208:11130/17:10364866 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11510/17:10364866 RIV/00064203:_____/17:10364866
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Respiratory sounds as a source of information in asthma diagnosis
Popis výsledku v původním jazyce
Around 300 million people all over the world at all age level suffer from asthma [1]. Patients with this disease have primarily difficult breathing with wheezing in respiratory sounds, cough and feeling of constricted chest. Therefore their physical activity is strongly limited [2]. Nowadays, there are several methods for asthma diagnosis, for example spirometry, measuring of peaks of expiratory velocity or measuring of bronchial reactivity. Although these methods are sufficiently reliable in most cases, they have also some imperfections, which are obvious especially by diagnosing of badly collaborating patients, e.g. small children aged up to three years. These infants can't provide operations required for diagnosis, so results performed diagnosis are not reliable. For this reason, there is an idea of developing non invasive method of asthma diagnosis and other pulmonary diseases that would not need collaboration of patient [3]. One of the most probably working usable principles is comparison of air flow in airways of healthy and ill person. The difference of the air flow is caused by bronchial obstruction and constriction of airways of patient. There are other sounds and wheezing in the respiratory sounds detectable during breathing as a typical manifestation of the disease [4]. These phenomena can be detected by hearing of sound or by harmonic analysis.
Název v anglickém jazyce
Respiratory sounds as a source of information in asthma diagnosis
Popis výsledku anglicky
Around 300 million people all over the world at all age level suffer from asthma [1]. Patients with this disease have primarily difficult breathing with wheezing in respiratory sounds, cough and feeling of constricted chest. Therefore their physical activity is strongly limited [2]. Nowadays, there are several methods for asthma diagnosis, for example spirometry, measuring of peaks of expiratory velocity or measuring of bronchial reactivity. Although these methods are sufficiently reliable in most cases, they have also some imperfections, which are obvious especially by diagnosing of badly collaborating patients, e.g. small children aged up to three years. These infants can't provide operations required for diagnosis, so results performed diagnosis are not reliable. For this reason, there is an idea of developing non invasive method of asthma diagnosis and other pulmonary diseases that would not need collaboration of patient [3]. One of the most probably working usable principles is comparison of air flow in airways of healthy and ill person. The difference of the air flow is caused by bronchial obstruction and constriction of airways of patient. There are other sounds and wheezing in the respiratory sounds detectable during breathing as a typical manifestation of the disease [4]. These phenomena can be detected by hearing of sound or by harmonic analysis.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lékař a technika
ISSN
0301-5491
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
4
Strana od-do
56-59
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85027376852