Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using mathematical analysis for bronchial obstruction detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F19%3A10399332" target="_blank" >RIV/00216208:11130/19:10399332 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11510/19:10399332

  • Výsledek na webu

    <a href="http://experimentalni-mechanika.cz/cs/konference/konference/2019.html?download=2817:using-mathematical-analysis-for-bronchial-obstruction-detection" target="_blank" >http://experimentalni-mechanika.cz/cs/konference/konference/2019.html?download=2817:using-mathematical-analysis-for-bronchial-obstruction-detection</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using mathematical analysis for bronchial obstruction detection

  • Popis výsledku v původním jazyce

    Around 300 million people all over the world suffer from asthma [1]. This disease affects all ages and patients have primarily difficult breathing with wheezing in respiratory sounds, cough and feeling of constricted chest. Therefore their physical activity is strongly limited [2]. For better treatment and relieving the disease symptoms the early diagnosis of the disease is needed. For asthma (and other pulmonary diseases) diagnosing, we have some reliable methods: spirometry, measuring of peaks of expiratory velocity or measuring of bronchial reactivity. Unfortunately, these methods have their limits: They are not reliable for badly collaboration patients like infants to 3 years old, because these patients can&apos;t provide operations required for the diagnosis method (e.g. maximal inhalation and expiration). In this case, the standard diagnosing methods can&apos;t be used and therefore it is necessary to develop other diagnosis method without need for difficult cooperation of these patients. One of the most probably working usable principles is observing changes in the breath sound of ill person and detection of wheezing and other sounds which are the typical manifestations of the disease [3]. These typical phenomena can be detected by auscultation or by observing changes in frequency spectra of breath sound recording, which is created by harmonic analysis. This method could be more sensitive and without need patient&apos;s collaboration.

  • Název v anglickém jazyce

    Using mathematical analysis for bronchial obstruction detection

  • Popis výsledku anglicky

    Around 300 million people all over the world suffer from asthma [1]. This disease affects all ages and patients have primarily difficult breathing with wheezing in respiratory sounds, cough and feeling of constricted chest. Therefore their physical activity is strongly limited [2]. For better treatment and relieving the disease symptoms the early diagnosis of the disease is needed. For asthma (and other pulmonary diseases) diagnosing, we have some reliable methods: spirometry, measuring of peaks of expiratory velocity or measuring of bronchial reactivity. Unfortunately, these methods have their limits: They are not reliable for badly collaboration patients like infants to 3 years old, because these patients can&apos;t provide operations required for the diagnosis method (e.g. maximal inhalation and expiration). In this case, the standard diagnosing methods can&apos;t be used and therefore it is necessary to develop other diagnosis method without need for difficult cooperation of these patients. One of the most probably working usable principles is observing changes in the breath sound of ill person and detection of wheezing and other sounds which are the typical manifestations of the disease [3]. These typical phenomena can be detected by auscultation or by observing changes in frequency spectra of breath sound recording, which is created by harmonic analysis. This method could be more sensitive and without need patient&apos;s collaboration.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30203 - Respiratory systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Experimental Stress Analysis 2019

  • ISBN

    978-80-214-5766-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    469-474

  • Název nakladatele

    Czech Society for Mechanics

  • Místo vydání

    Brno

  • Místo konání akce

    Luhačovice

  • Datum konání akce

    3. 6. 2019

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku