Automatic processing protocol to evaluate the impact of functional network damage and reorganization on cognitive functions after stroke
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11130%2F21%3A10430958" target="_blank" >RIV/00216208:11130/21:10430958 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/MeMeA52024.2021.9478769" target="_blank" >https://doi.org/10.1109/MeMeA52024.2021.9478769</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MeMeA52024.2021.9478769" target="_blank" >10.1109/MeMeA52024.2021.9478769</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic processing protocol to evaluate the impact of functional network damage and reorganization on cognitive functions after stroke
Popis výsledku v původním jazyce
An ischemic stroke is a local lesion that disrupts the large-scale structural and functional connectivity of the brain. Although local, the ischemic stroke often leads to deficits in cognitive functions which can't be explained by local brain damage. It is believed that stroke-induced large-scale network alteration represents the mechanisms responsible for a decline in cognitive functions which are dependent on large-scale integration. To gain insight into the pathophysiological principles of how a local lesion results in a global cognitive decline requires a reliable and robust algorithm that can quantify the relationship between cognitive functions and network properties. In this study, we have developed, optimized, and tested a processing pipeline to parameterize complex neuropsychological evaluation and determine the functional connectivity from high-density EEG recordings. The developed algorithm was applied on a cohort of 27 patients who suffered a stroke and who were underwent cognitive examinations and high-density EEG monitoring one and two years after the stroke. The developed automatic algorithm demonstrated that it can reliably estimate functional connectivity and that it is robust against the physiological and technical artifacts. The proposed processing pipeline allows an unbiased and quantitative characterization of cognitive performance and its comparison with functional connectivity alterations.
Název v anglickém jazyce
Automatic processing protocol to evaluate the impact of functional network damage and reorganization on cognitive functions after stroke
Popis výsledku anglicky
An ischemic stroke is a local lesion that disrupts the large-scale structural and functional connectivity of the brain. Although local, the ischemic stroke often leads to deficits in cognitive functions which can't be explained by local brain damage. It is believed that stroke-induced large-scale network alteration represents the mechanisms responsible for a decline in cognitive functions which are dependent on large-scale integration. To gain insight into the pathophysiological principles of how a local lesion results in a global cognitive decline requires a reliable and robust algorithm that can quantify the relationship between cognitive functions and network properties. In this study, we have developed, optimized, and tested a processing pipeline to parameterize complex neuropsychological evaluation and determine the functional connectivity from high-density EEG recordings. The developed algorithm was applied on a cohort of 27 patients who suffered a stroke and who were underwent cognitive examinations and high-density EEG monitoring one and two years after the stroke. The developed automatic algorithm demonstrated that it can reliably estimate functional connectivity and that it is robust against the physiological and technical artifacts. The proposed processing pipeline allows an unbiased and quantitative characterization of cognitive performance and its comparison with functional connectivity alterations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30105 - Physiology (including cytology)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-25298S" target="_blank" >GA20-25298S: Buněčné mechanizmy vysokofrekvenčních mozkových oscilací a patologicky propojených neuronálních shluků.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2021 - Conference Proceedings
ISBN
978-1-66543-023-4
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Piscataway, USA
Místo konání akce
Virtual, Lausanne
Datum konání akce
23. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—