Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Classification of Global Microglia Proliferation Based on Deep Learning with Local Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11140%2F22%3A10444957" target="_blank" >RIV/00216208:11140/22:10444957 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1117/12.2611581" target="_blank" >http://dx.doi.org/10.1117/12.2611581</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2611581" target="_blank" >10.1117/12.2611581</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Classification of Global Microglia Proliferation Based on Deep Learning with Local Images

  • Popis výsledku v původním jazyce

    Microglial cell proliferation in neural tissue (neuroinflammation) occurs during infections, neurological disease, neurotoxicity, and other conditions. In basic science and clinical studies, quantification of microglial proliferation requires extensive manual counting (cell clicking) by trained experts (~ 2 hours per case). Previous efforts to automate this process have focused on stereology-based estimation of global cell number using deep learning (DL)based segmentation of immunostained microglial cells at high magnification. To further improve on throughput efficiency, we propose a novel approach using snapshot ensembles of convolutional neural networks (CNN) with training using local images, i.e., low (20x) magnification, to predict high or low microglial proliferation at the global level. An expert uses stereology to quantify the global microglia cell number at high magnification, applies a label of high or low proliferation at the animal (mouse) level, then assigns this global label to each 20x image as ground truth for training a CNN to predict global proliferation. To test accuracy, cross validation with six mouse brains from each class for training and one each for testing was done. The ensemble predictions were averaged, and the test brain was assigned a label based on the predicted class of the majority of images from that brain. The ensemble accurately classified proliferation in 11 of 14 brains (~ 80%) in less than a minute per case, without cell-level segmentation or manual stereology at high magnification. This approach shows, for the first time, that training a DL model with local images can efficiently predict microglial cell proliferation at the global level. The dataset used in this work is publicly available at: tinyurl.com/20xData-USF-SRC.

  • Název v anglickém jazyce

    Classification of Global Microglia Proliferation Based on Deep Learning with Local Images

  • Popis výsledku anglicky

    Microglial cell proliferation in neural tissue (neuroinflammation) occurs during infections, neurological disease, neurotoxicity, and other conditions. In basic science and clinical studies, quantification of microglial proliferation requires extensive manual counting (cell clicking) by trained experts (~ 2 hours per case). Previous efforts to automate this process have focused on stereology-based estimation of global cell number using deep learning (DL)based segmentation of immunostained microglial cells at high magnification. To further improve on throughput efficiency, we propose a novel approach using snapshot ensembles of convolutional neural networks (CNN) with training using local images, i.e., low (20x) magnification, to predict high or low microglial proliferation at the global level. An expert uses stereology to quantify the global microglia cell number at high magnification, applies a label of high or low proliferation at the animal (mouse) level, then assigns this global label to each 20x image as ground truth for training a CNN to predict global proliferation. To test accuracy, cross validation with six mouse brains from each class for training and one each for testing was done. The ensemble predictions were averaged, and the test brain was assigned a label based on the predicted class of the majority of images from that brain. The ensemble accurately classified proliferation in 11 of 14 brains (~ 80%) in less than a minute per case, without cell-level segmentation or manual stereology at high magnification. This approach shows, for the first time, that training a DL model with local images can efficiently predict microglial cell proliferation at the global level. The dataset used in this work is publicly available at: tinyurl.com/20xData-USF-SRC.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    30502 - Other medical science

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000787" target="_blank" >EF16_019/0000787: Centrum výzkumu infekčních onemocnění</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Progress in Biomedical Optics and Imaging - Proceedings of SPIE

  • ISBN

    978-1-5106-4939-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Název nakladatele

    Society of Photo-Optical Instrumentation Engineers

  • Místo vydání

    Washington

  • Místo konání akce

    San Diego

  • Datum konání akce

    20. 2. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000836295600085