Sleep scoring using polysomnography data features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11150%2F18%3A10378647" target="_blank" >RIV/00216208:11150/18:10378647 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/18:00327424 RIV/60461373:22340/18:43915777
Výsledek na webu
<a href="https://doi.org/10.1007/s11760-018-1252-6" target="_blank" >https://doi.org/10.1007/s11760-018-1252-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11760-018-1252-6" target="_blank" >10.1007/s11760-018-1252-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sleep scoring using polysomnography data features
Popis výsledku v původním jazyce
The paper is devoted to the analysis of multichannel biomedical signals acquired in the sleep laboratory. The data analyzed represent polysomnographic records of (i) 33 healthy individuals, (ii) 25 individuals with sleep apnea, and (iii) 18 individuals with sleep apnea and restless leg syndrome. The initial statistical analysis of the sleep segments points to an increase in the number of Wake stages and the decrease in REM stages with increase in age. The goal of the study is visualization of features associated with sleep stages as specified by an experienced neurologist and in their adaptive classification. The results of the support vector machine classifier are compared with those obtained by the k-nearest neighbors method, decision tree and neural network classification using sigmoidal and Bayesian transfer functions. The achieved accuracy for the classification into two classes (to separate the Wake stage from one of NonREM and REM stages) is between 85.6 and 97.5% for the given set of patients with sleep apnea. The proposed models allow adaptive modification of the model coefficients during the learning process to increase the diagnostic efficiency of sleep disorder analysis, in both the clinical and home environments.
Název v anglickém jazyce
Sleep scoring using polysomnography data features
Popis výsledku anglicky
The paper is devoted to the analysis of multichannel biomedical signals acquired in the sleep laboratory. The data analyzed represent polysomnographic records of (i) 33 healthy individuals, (ii) 25 individuals with sleep apnea, and (iii) 18 individuals with sleep apnea and restless leg syndrome. The initial statistical analysis of the sleep segments points to an increase in the number of Wake stages and the decrease in REM stages with increase in age. The goal of the study is visualization of features associated with sleep stages as specified by an experienced neurologist and in their adaptive classification. The results of the support vector machine classifier are compared with those obtained by the k-nearest neighbors method, decision tree and neural network classification using sigmoidal and Bayesian transfer functions. The achieved accuracy for the classification into two classes (to separate the Wake stage from one of NonREM and REM stages) is between 85.6 and 97.5% for the given set of patients with sleep apnea. The proposed models allow adaptive modification of the model coefficients during the learning process to increase the diagnostic efficiency of sleep disorder analysis, in both the clinical and home environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal, Image and Video Processing
ISSN
1863-1703
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
1043-1051
Kód UT WoS článku
000441392700004
EID výsledku v databázi Scopus
2-s2.0-85041913126