Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F22%3A10450998" target="_blank" >RIV/00216208:11160/22:10450998 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/22:00127220
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MjFHnUzCn2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MjFHnUzCn2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d2cp01638a" target="_blank" >10.1039/d2cp01638a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach
Popis výsledku v původním jazyce
This work extends the multi-scale computational scheme for the quantum mechanics (QM) calculations of Nuclear Magnetic Resonance (NMR) chemical shifts (CSs) in proteins that lack a well-defined 3D structure. The scheme couples the sampling of an intrinsically disordered protein (IDP) by classical molecular dynamics (MD) with protein fragmentation using the adjustable density matrix assembler (ADMA) and density functional theory (DFT) calculations. In contrast to our early investigation on IDPs (Pavlikova Precechtelova et al., J. Chem. Theory Comput., 2019, 15, 5642-5658) and the state-of-the art NMR calculations for structured proteins, a partial re-optimization was implemented on the raw MD geometries in vibrational normal mode coordinates to enhance the accuracy of the MD/ADMA/DFT computational scheme. In addition, machine-learning based cluster analysis was performed on the scheme to explore its potential in producing protein structure ensembles (CLUSTER ensembles) that yield accurate CSs at a reduced computational cost. The performance of the cluster-based calculations is validated against results obtained with conventional structural ensembles consisting of MD snapshots extracted from the MD trajectory at regular time intervals (REGULAR ensembles). CS calculations performed with the refined MD/ADMA/DFT framework employed the 6-311++G(d,p) basis set that outperformed IGLO-III calculations with the same density functional approximation (B3LYP) and both explicit and implicit solvation. The partial geometry optimization did not universally improve the agreement of computed CSs with the experiment but substantially decreased errors associated with the ensemble averaging. A CLUSTER ensemble with 50 structures yielded ensemble averages close to those obtained with a REGULAR ensemble consisting of 500 MD frames. The cluster based calculations thus required only a fraction of the computational time.
Název v anglickém jazyce
Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach
Popis výsledku anglicky
This work extends the multi-scale computational scheme for the quantum mechanics (QM) calculations of Nuclear Magnetic Resonance (NMR) chemical shifts (CSs) in proteins that lack a well-defined 3D structure. The scheme couples the sampling of an intrinsically disordered protein (IDP) by classical molecular dynamics (MD) with protein fragmentation using the adjustable density matrix assembler (ADMA) and density functional theory (DFT) calculations. In contrast to our early investigation on IDPs (Pavlikova Precechtelova et al., J. Chem. Theory Comput., 2019, 15, 5642-5658) and the state-of-the art NMR calculations for structured proteins, a partial re-optimization was implemented on the raw MD geometries in vibrational normal mode coordinates to enhance the accuracy of the MD/ADMA/DFT computational scheme. In addition, machine-learning based cluster analysis was performed on the scheme to explore its potential in producing protein structure ensembles (CLUSTER ensembles) that yield accurate CSs at a reduced computational cost. The performance of the cluster-based calculations is validated against results obtained with conventional structural ensembles consisting of MD snapshots extracted from the MD trajectory at regular time intervals (REGULAR ensembles). CS calculations performed with the refined MD/ADMA/DFT framework employed the 6-311++G(d,p) basis set that outperformed IGLO-III calculations with the same density functional approximation (B3LYP) and both explicit and implicit solvation. The partial geometry optimization did not universally improve the agreement of computed CSs with the experiment but substantially decreased errors associated with the ensemble averaging. A CLUSTER ensemble with 50 structures yielded ensemble averages close to those obtained with a REGULAR ensemble consisting of 500 MD frames. The cluster based calculations thus required only a fraction of the computational time.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30104 - Pharmacology and pharmacy
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
1463-9084
Svazek periodika
24
Číslo periodika v rámci svazku
45
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
27678-27692
Kód UT WoS článku
000885111900001
EID výsledku v databázi Scopus
2-s2.0-85142385706