Proof systems for Moss' coalgebraic logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F14%3A10279707" target="_blank" >RIV/00216208:11210/14:10279707 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0304397514004423" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0304397514004423</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2014.06.018" target="_blank" >10.1016/j.tcs.2014.06.018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Proof systems for Moss' coalgebraic logic
Popis výsledku v původním jazyce
We study Gentzen-style proof theory of the finitary version of the coalgebraic logic introduced by L. Moss. The logic captures the behaviour of coalgebras for a large class of set functors. The syntax of the logic, defined uniformly with respect to a finitary coalgebraic type functor T, uses a single modal operator of arity given by the functor T itself, and its semantics is defined in terms of a relation lifting functor. An axiomatization of the logic, consisting of modal distributive laws, has been given together with an algebraic completeness proof in work of C. Kupke, A. Kurz and Y. Venema. In this paper, following our previous work on structural proof theory of the logic in the special case of the finitary powerset functor, we present cut-free, one- and two-sided sequent calculi for the finitary version of Moss' coalgebraic logic for a general finitary functor T in a uniform way. For the two-sided calculi to be cut-free we use a language extended with the boolean dual of the nabla
Název v anglickém jazyce
Proof systems for Moss' coalgebraic logic
Popis výsledku anglicky
We study Gentzen-style proof theory of the finitary version of the coalgebraic logic introduced by L. Moss. The logic captures the behaviour of coalgebras for a large class of set functors. The syntax of the logic, defined uniformly with respect to a finitary coalgebraic type functor T, uses a single modal operator of arity given by the functor T itself, and its semantics is defined in terms of a relation lifting functor. An axiomatization of the logic, consisting of modal distributive laws, has been given together with an algebraic completeness proof in work of C. Kupke, A. Kurz and Y. Venema. In this paper, following our previous work on structural proof theory of the logic in the special case of the finitary powerset functor, we present cut-free, one- and two-sided sequent calculi for the finitary version of Moss' coalgebraic logic for a general finitary functor T in a uniform way. For the two-sided calculi to be cut-free we use a language extended with the boolean dual of the nabla
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GPP202%2F11%2FP304" target="_blank" >GPP202/11/P304: Teorie důkazů modální koalgebraické logiky</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
549
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
36-60
Kód UT WoS článku
000341551400003
EID výsledku v databázi Scopus
—