Epistemic Logics for Skeptical Agents
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F16%3A10292064" target="_blank" >RIV/00216208:11210/16:10292064 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1093/logcom/exv009" target="_blank" >http://dx.doi.org/10.1093/logcom/exv009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exv009" target="_blank" >10.1093/logcom/exv009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Epistemic Logics for Skeptical Agents
Popis výsledku v původním jazyce
This paper introduces an epistemic modal operator modeling knowledge over distributive non-associative full Lambek calculus with a negation. Our approach is based on the relational semantics for substructural logics, we interpret the elements of a relational frame as information states consisting of collections of data. The principal epistemic relation between the states is the one of being a reliable source of information, on the basis of which we explicate the notion of knowledge as information confirmed by a reliable source. From this point of view it is natural to dene the epistemic operator formally as the backward-looking diamond modality. The system is modular in the sense that the axiomatization of the epistemic operator is sound and complete with respect to a wide class of background logics, which makes the system potentially applicable to a wide class of epistemic contexts. The system admits a weak form of logical omniscience (the monotonicity rule), but avoids stronger ones (a necessitation rule and a K-axiom) as well as some closure properties discussed in normal epistemic logics (like positive and negative introspection). For these properties we provide characteristic frame conditions, so that they can be present in the system if they are considered to be appropriate for some specic epistemic context. We also prove decidability of the weakest epistemic logic we consider, using a filtration method. Finally we outline further extensions of our framework to a multiagent system.
Název v anglickém jazyce
Epistemic Logics for Skeptical Agents
Popis výsledku anglicky
This paper introduces an epistemic modal operator modeling knowledge over distributive non-associative full Lambek calculus with a negation. Our approach is based on the relational semantics for substructural logics, we interpret the elements of a relational frame as information states consisting of collections of data. The principal epistemic relation between the states is the one of being a reliable source of information, on the basis of which we explicate the notion of knowledge as information confirmed by a reliable source. From this point of view it is natural to dene the epistemic operator formally as the backward-looking diamond modality. The system is modular in the sense that the axiomatization of the epistemic operator is sound and complete with respect to a wide class of background logics, which makes the system potentially applicable to a wide class of epistemic contexts. The system admits a weak form of logical omniscience (the monotonicity rule), but avoids stronger ones (a necessitation rule and a K-axiom) as well as some closure properties discussed in normal epistemic logics (like positive and negative introspection). For these properties we provide characteristic frame conditions, so that they can be present in the system if they are considered to be appropriate for some specic epistemic context. We also prove decidability of the weakest epistemic logic we consider, using a filtration method. Finally we outline further extensions of our framework to a multiagent system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GPP202%2F11%2FP304" target="_blank" >GPP202/11/P304: Teorie důkazů modální koalgebraické logiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Logic and Computation
ISSN
0955-792X
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
27
Strana od-do
1815-1841
Kód UT WoS článku
000392844500003
EID výsledku v databázi Scopus
2-s2.0-85014581350