Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Epistemic logics for sceptical agents

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F16%3A00471689" target="_blank" >RIV/67985955:_____/16:00471689 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1093/logcom/exv009" target="_blank" >http://dx.doi.org/10.1093/logcom/exv009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/logcom/exv009" target="_blank" >10.1093/logcom/exv009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Epistemic logics for sceptical agents

  • Popis výsledku v původním jazyce

    In this article, we introduce an epistemic modal operator modelling knowledge over distributive non-associative full Lambek calculus with a negation. Our approach is based on the relational semantics for substructural logics: we interpret the elements of a relational frame as information states consisting of collections of data. The principal epistemic relation between the states is the one of being a reliable source of information, on the basis of which we explicate the notion of knowledge as information confirmed by a reliable source. From this point of view it is natural to define the epistemic operator formally as the backward-looking diamond modality. The framework is a generalization and extension of the system of relevant epistemic logic proposed by Majer and Pelis (2009, college Publications, 123-135) and developed by Bilkova et al. (2010, college Publications, 22-38). The system is modular in the sense that the axiomatization of the epistemic operator is sound and complete with respect to a wide class of background logics, which makes the system potentially applicable to a wide class of epistemic contexts. Our system admits a weak form of logical omniscience (the monotonicity rule), but avoids stronger ones (a necessitation rule and a K-axiom) as well as some closure properties discussed in normal epistemic logics (like positive and negative introspection). For these properties we provide characteristic frame conditions, so that they can be present in the system if they are considered to be appropriate for some specific epistemic context. We also prove decidability of the weakest epistemic logic we consider, using a filtration method. Finally, we outline further extensions of our framework to a multiagent system.

  • Název v anglickém jazyce

    Epistemic logics for sceptical agents

  • Popis výsledku anglicky

    In this article, we introduce an epistemic modal operator modelling knowledge over distributive non-associative full Lambek calculus with a negation. Our approach is based on the relational semantics for substructural logics: we interpret the elements of a relational frame as information states consisting of collections of data. The principal epistemic relation between the states is the one of being a reliable source of information, on the basis of which we explicate the notion of knowledge as information confirmed by a reliable source. From this point of view it is natural to define the epistemic operator formally as the backward-looking diamond modality. The framework is a generalization and extension of the system of relevant epistemic logic proposed by Majer and Pelis (2009, college Publications, 123-135) and developed by Bilkova et al. (2010, college Publications, 22-38). The system is modular in the sense that the axiomatization of the epistemic operator is sound and complete with respect to a wide class of background logics, which makes the system potentially applicable to a wide class of epistemic contexts. Our system admits a weak form of logical omniscience (the monotonicity rule), but avoids stronger ones (a necessitation rule and a K-axiom) as well as some closure properties discussed in normal epistemic logics (like positive and negative introspection). For these properties we provide characteristic frame conditions, so that they can be present in the system if they are considered to be appropriate for some specific epistemic context. We also prove decidability of the weakest epistemic logic we consider, using a filtration method. Finally, we outline further extensions of our framework to a multiagent system.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    AA - Filosofie a náboženství

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-21076S" target="_blank" >GA13-21076S: Základy logiky ve světle nových výsledků filosofie a vědy</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Logic and Computation

  • ISSN

    0955-792X

  • e-ISSN

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    27

  • Strana od-do

    1815-1841

  • Kód UT WoS článku

    000392844500003

  • EID výsledku v databázi Scopus

    2-s2.0-85014581350