Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sinister Connections: How to Analyse Organised Crime with Social Network Analysis?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F18%3A10378841" target="_blank" >RIV/00216208:11210/18:10378841 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.14712/24647055.2018.7" target="_blank" >https://doi.org/10.14712/24647055.2018.7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/24647055.2018.7" target="_blank" >10.14712/24647055.2018.7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sinister Connections: How to Analyse Organised Crime with Social Network Analysis?

  • Popis výsledku v původním jazyce

    Networks have recently become ubiquitous in many scientific fields. In criminology, social network analysis (SNA) provides a potent tool for analysis of organized crime. This paper introduces basic network terms and measures as well as advanced models and reviews their application in criminological research. The centrality measures - degree and betweenness - are introduced as means to describe relative importance of actors in the network. The centrality measures are useful also in determining strategically positioned actors within the network or providing efficient targets for disruption of criminal networks. The cohesion measures, namely density, centralization, and average geodesic distance are described and their relevance is related to the idea of efficiency-security trade-off. As the last of the basic measures, the attention is paid to subgroup identification algorithms such as cliques, k-plexes, and factions. Subgroups are essential in the discussion on the cell-structure in criminal networks. The following part of the paper is a brief overview of more sophisticated network models. Models allow for theory testing, distinguishing systematic processes from randomness, and simplification of complex network structures. Quadratic assignment procedure, blockmodels, exponential random graph models, and stochastic actor-oriented models are covered. Some important research examples include similarities in co-offending, core-periphery structures, closure and brokerage, and network evolution. Subsequently, the paper reflects the three biggest challenges for application of SNA to criminal settings - data availability, proper formulation of theories and adequate methods application. In conclusion, readers are referred to books and journals combining SNA and criminology as well as to software suitable to carry out SNA.

  • Název v anglickém jazyce

    Sinister Connections: How to Analyse Organised Crime with Social Network Analysis?

  • Popis výsledku anglicky

    Networks have recently become ubiquitous in many scientific fields. In criminology, social network analysis (SNA) provides a potent tool for analysis of organized crime. This paper introduces basic network terms and measures as well as advanced models and reviews their application in criminological research. The centrality measures - degree and betweenness - are introduced as means to describe relative importance of actors in the network. The centrality measures are useful also in determining strategically positioned actors within the network or providing efficient targets for disruption of criminal networks. The cohesion measures, namely density, centralization, and average geodesic distance are described and their relevance is related to the idea of efficiency-security trade-off. As the last of the basic measures, the attention is paid to subgroup identification algorithms such as cliques, k-plexes, and factions. Subgroups are essential in the discussion on the cell-structure in criminal networks. The following part of the paper is a brief overview of more sophisticated network models. Models allow for theory testing, distinguishing systematic processes from randomness, and simplification of complex network structures. Quadratic assignment procedure, blockmodels, exponential random graph models, and stochastic actor-oriented models are covered. Some important research examples include similarities in co-offending, core-periphery structures, closure and brokerage, and network evolution. Subsequently, the paper reflects the three biggest challenges for application of SNA to criminal settings - data availability, proper formulation of theories and adequate methods application. In conclusion, readers are referred to books and journals combining SNA and criminology as well as to software suitable to carry out SNA.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    50401 - Sociology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Universitatis Carolinae. Philosophica et Historica

  • ISSN

    0567-8293

  • e-ISSN

  • Svazek periodika

    2018

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    21

  • Strana od-do

    115-135

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus