Machine Learning in Terminology Extraction from Czech and English Texts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F21%3A10436228" target="_blank" >RIV/00216208:11210/21:10436228 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vQFuByhTjv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vQFuByhTjv</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/lf-2021-0014" target="_blank" >10.2478/lf-2021-0014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning in Terminology Extraction from Czech and English Texts
Popis výsledku v původním jazyce
The method of automatic term recognition based on machine learning is focused primarily on the most important quantitative term attributes. It is able to successfully identify terms and non-terms (with success rate of more than 95%) and find characteristic features of a term as a terminological unit. The single-word term can be characterized as a word with a low frequency that occurs considerably more often in specialized texts than in non-academic texts, occurs in a small number of disciplines, its distribution in the corpus is uneven as is the distance between its two instances. The multi-word term is a collocation consisting of words with low frequency and contains at least one single-word term. The method is based on quantitative features and it makes it possible to utilize the algorithms in multiple disciplines as well as to create cross-lingual applications (verified on Czech and English).
Název v anglickém jazyce
Machine Learning in Terminology Extraction from Czech and English Texts
Popis výsledku anglicky
The method of automatic term recognition based on machine learning is focused primarily on the most important quantitative term attributes. It is able to successfully identify terms and non-terms (with success rate of more than 95%) and find characteristic features of a term as a terminological unit. The single-word term can be characterized as a word with a low frequency that occurs considerably more often in specialized texts than in non-academic texts, occurs in a small number of disciplines, its distribution in the corpus is uneven as is the distance between its two instances. The multi-word term is a collocation consisting of words with low frequency and contains at least one single-word term. The method is based on quantitative features and it makes it possible to utilize the algorithms in multiple disciplines as well as to create cross-lingual applications (verified on Czech and English).
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
60203 - Linguistics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000734" target="_blank" >EF16_019/0000734: Kreativita a adaptabilita jako předpoklad úspěchu Evropy v propojeném světě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linguistic Frontiers [online]
ISSN
2544-6339
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
23-30
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—