Source language classification of indirect translations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F22%3A10456674" target="_blank" >RIV/00216208:11210/22:10456674 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SMT_u-XsKd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SMT_u-XsKd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1075/target.00006.iva" target="_blank" >10.1075/target.00006.iva</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Source language classification of indirect translations
Popis výsledku v původním jazyce
One of the major barriers to the systematic study of indirect translation - that is, translations of translations - is the lack of efficient methods to identify these translations. In this article, we use supervised machine learning to examine whether computers can be harnessed to identify indirect translations. Our data consist of a monolingual comparable corpus that includes (1) nontranslated Finnish texts, (2) direct translations from English, French, German, Greek, and Swedish into Finnish, and (3) indirect translations from Greek (the ultimate source language) via English, French, German, and Swedish (mediating languages) into Finnish. We use n-grams of various types and lengths as feature sets and random forests as the statistical classification technique. To maximize the transferability of the method, the feature sets were implemented in accordance with the Universal Dependencies framework. This study confirms that computers can distinguish between translated and nontranslated Finnish, as well as between Finnish translations made from different source languages. Regarding indirect translations, the ultimate source language has a greater impact on the linguistic composition of indirect Finnish translations than their respective mediating languages. Hence, the indirect translations could not be reliably identified. Therefore, our results suggest that the reliable computational identification of indirect translations and their mediating languages requires a way to control for the effect of the ultimate source language.
Název v anglickém jazyce
Source language classification of indirect translations
Popis výsledku anglicky
One of the major barriers to the systematic study of indirect translation - that is, translations of translations - is the lack of efficient methods to identify these translations. In this article, we use supervised machine learning to examine whether computers can be harnessed to identify indirect translations. Our data consist of a monolingual comparable corpus that includes (1) nontranslated Finnish texts, (2) direct translations from English, French, German, Greek, and Swedish into Finnish, and (3) indirect translations from Greek (the ultimate source language) via English, French, German, and Swedish (mediating languages) into Finnish. We use n-grams of various types and lengths as feature sets and random forests as the statistical classification technique. To maximize the transferability of the method, the feature sets were implemented in accordance with the Universal Dependencies framework. This study confirms that computers can distinguish between translated and nontranslated Finnish, as well as between Finnish translations made from different source languages. Regarding indirect translations, the ultimate source language has a greater impact on the linguistic composition of indirect Finnish translations than their respective mediating languages. Hence, the indirect translations could not be reliably identified. Therefore, our results suggest that the reliable computational identification of indirect translations and their mediating languages requires a way to control for the effect of the ultimate source language.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60203 - Linguistics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Target
ISSN
0924-1884
e-ISSN
1569-9986
Svazek periodika
34
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
370-394
Kód UT WoS článku
000782566300001
EID výsledku v databázi Scopus
—